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1 Introduction

A substantial body of theoretical and empirical literature suggests that labor markets reward

workers for accepting fatal risk. However, the collective empirical evidence on the size of compen-

sating differentials for fatal risk is extremely imprecise. The wide variation in estimates across

studies is likely a consequence of two types of endogeneity biases: (1) omitted variable biases

caused by unobserved differences across jobs that are correlated with observed characteristics

of workers and/or firms in a hedonic wage model.1 And (2), bias caused by the endogeneity of

variation in wage-risk pairs, which can be exacerbated in panel studies that identify compensa-

ting differentials from within-worker job switches in an effort to reduce bias of the first type.2

For example, if workers searching for jobs in frictional labor markets tend to move when they

receive offers that provide higher utility, then job changes may be associated with both higher

wages and better non-wage amenities.3

In this paper I use a unique new panel dataset from the commercial fishing industry to es-

timate a model of compensating wage differentials for occupational safety that addresses both

of these key estimation problems. The model allows for arbitrary unobserved worker heteroge-

neity, establishment heterogeneity, match-specific heterogeneity, and non-random assignment of

workers to establishments that may be correlated with each of these latent components, relaxing

a broad array of modeling assumptions. Avoiding the problems caused by labor market frictions

and the assortative matching of workers and firms narrows what Hwang, Mortensen, and Reed

(1998) describe as a “substantial gap between conventional hedonic wage theory and the real

world data to which it is applied.” The estimates provide new information about how workers

make decisions when facing the risk of injury or death, and how individuals’ marginal decisions

are affected as the magnitudes of risks become very large. Estimates of the marginal willingness

to accept fatal risk are critical to cost-benefit analyses for a wide range of public safety and

health policies, and influence tens of billions of dollars of federal spending in the US each year.

I chose this empirical setting to exploit several unique institutional features of the labor

market that aid identification. Conceptually, a nearly ideal experiment for estimating the com-

pensating wage differential for occupational safety would have the following setup. Take a sample

of worker-firm pairs, and in each time period exogenously change the technology used by the

firm to provide safety, shifting the isoprofit function of the firm in wage-safety space. After the

technology shock, the same worker-firm pair renegotiates a spot employment contract for that

period. The Bering Sea commercial fisheries that I study have features very similar to such an

experiment. These fisheries experience large, but predictable, changes in occupational hazards

over time. This variation occurs both within years, for example the fatality rate in the fisheries

studied is about five times higher in winter months than in summer months, and across years,

1See, for example, Card, Heining, and Kline (2013), Krueger and Summers (1988), Murphy and Topel (1987,
1990), Gibbons and Katz (1992), Abowd, Kramarz, and Margolis (1999), and Taber and Vejlin (2016).

2See Gibbons and Katz (1992) for empirical evidence suggesting that endogenous job mobility biases estimates
of compensating differentials.

3See Bonhomme and Jolivet (2009), Dey and Flinn (2008), and Lavetti and Schmutte (2018) for discussions
of identification of compensating wage differentials under frictional search.
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as intermediate-term La Niña weather patterns tend to increase the fatality rate, and several

policy changes caused improvements to safety. This variation improves upon what Ashenfelter

and Greenstone (2004) describe as the major limitation in estimating the VSL using compensa-

ting wage differentials, that “most methods for assessing the VSL from labor market data are

not based on choices made in the face of exogenous safety risks.” A second important feature

is that labor contracts are very short-term spot contracts, typically lasting a few weeks to a

few months.4 The combination of these features causes fatality rates and hourly earnings to

vary substantially and with high frequency, even for workers who remain employed by the same

vessel. The seasonal variation in average fatality rates and average wages is shown in Figure 1.

The goal of this paper is to use a specific labor market with very appealing features to learn 1)

how the marginal value of statistical life changes when the same set of workers is exposed to high

risks, and 2) to evaluate empirical methodologies commonly used to estimate compensating wage

differentials and the value of statistical life, a classic topic in labor economics that has long been

considered notoriously difficult to solve (Bonhomme and Jolivet, 2009), by taking advantage of

the unique institutional features of this setting. The results of this study are not intended to

inform safety policies generally, or to contribute a numerical estimate of the value of statistical

life (VSL) to the literature. I present a case study of a single industry that directly resolves some

of the major identification challenges in the literature, with the hope that this study can guide

the methodological decisions of future researchers, and help understand and precisely target the

key remaining estimation challenges. This in turn may help influence a wide range of public

health and safety policies that are based on the VSL, and other important parameters derived

from compensating wage differentials.

Since administrative data are not available at the individual job level, I conducted a survey

of commercial fishing deckhands who worked in the Alaskan Bering Sea and Aleutian Islands

(BSAI) fisheries between 2003 and 2009. The survey was designed to capture information about

variation in wages and fatality rates within worker-vessel pairs over time. In the sample I

observe on average 9 job-spells per worker and 6.5 job-spells per worker-vessel pair, a long panel

by labor-market standards. Estimating a fixed effects specification with worker-vessel match

effects allows for the possibility that workers have unobserved differences in productivity for

which they are compensated, that firms differ in productivity and pay quasi-rents to workers,

that labor markets may not be perfectly competitive, and that each unique worker-firm pair

may have unobserved productive complementarities, some of which are paid to the worker.

Although similar models are technically identifiable in general labor market settings where

matched employer-employee data can be linked to data on job amenities, the features of the

labor market for fishing deckhands are unique in that they cause an unusually large amount

of variation in fatality rates and safety within worker-vessel pairs. In contrast, Lavetti and

Schmutte (2018) estimate a comparable model using the census of jobs in Brazil, but find that

4 The fisheries studied are not unique for having spot labor markets. Beaudry and DiNardo (1991) find
insignificant and wrong-sided evidence of implicit contracts in the forestry and fishing industry using CPS data,
in contrast to most other industries.
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Figure 1: Monthly Average Fatality Rate and Hourly Earnings
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Notes: Average fatality rates are measured in deaths per 1,000 full-time equivalent worker-years based on data from
1995-2009. Vertical bars are two standard deviations. ‘Predicted Fatality Rate’ is the weather-based expectation
of the fatality rate from Model 2 in Appendix Table A5. Mean hourly earnings are weighted by the length of
job spells. The mean and standard deviation of fatality rates in April are skewed by one month in which 15
fatalities occurred. Fatality rates and hourly earnings for December are not shown because monthly average FTE
employment is about 87-99% lower in December, so there are very few data points.

less than 3% of the total variance in fatality rates occurs within jobs. As a consequence of the

small amount of variation, workers do not appear to renegotiate wages in response to within-job

variation, perhaps due to a lack of salience or to wage stickiness. In the current setting the

majority of the variance in fatality rates occurs within jobs over time, and the magnitude of the

within-job variation is as large as 100 times the average manufacturing fatality rate level in the

US, offering a unique opportunity to learn about decision-making in high-risk situations. At

the same time, these risk levels are not unusual relative to many other health-related decisions.

For example, the mortality rate attributable to smoking is 3.84 per 1,000 person-years,5 and the

rate among military infantry is over 6,6 both of which are substantially higher than the average

risk in Bering Sea fisheries.

Despite the unique empirical setting, there are several methodological lessons that are bro-

adly relevant to estimating compensating wage differentials. First, by replicating each of the

5Source: CDC. State-Specific Smoking-Attributable Mortality and Years of Potential Life Lost — United
States, 2000–2004. MMWR 2009;58:29-33.

6See Greenstone et al. 2014.
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identification strategies that can be implemented with standard data sources, along with more

robust models, the estimates provide a decomposition of the directions and magnitudes of the

bias components associated with each source of unobserved wage heterogeneity, which have not

previously been estimated. Consistent with results based on data from the PSID,7 I find substan-

tial positive bias in cross-sectional specifications relative to within-worker estimates. Although

these results may have led to the assumption that the remaining bias components due to latent

firm and job-match heterogeneity are also positive, I find the opposite. The estimated covariance

between unobserved firm heterogeneity and risk is negative, while the covariance between unob-

served worker heterogeneity and risk is positive, so the bias components partially oppose each

other in cross-sectional models. This correlation between latent firm wage heterogeneity and

job amenities has been a central focus in many recent advances in improving the estimation of

compensating wage differentials, including Sorkin (2016), Taber and Vejlin (2016), and Lavetti

and Schmutte (2018). Still, the worker effects model offers a substantial improvement relative

to cross-sectional specifications, as it removes about 84% of the bias in the cross-sectional model

relative to the match effects model at the mean fatality rate.

Using pooled cross-sectional variation across jobs, I estimate the marginal value of statistical

life (MVSL) to be $12.6 million at a fatality rate of 1 death per 1,000 full-time equivalent

worker-years (FTEs). After controlling for unobserved worker, firm and match heterogeneity,

and removing the effects of endogenous job assignment, the estimated MVSL decreases by 48% to

$6.6 million. This suggests that endogeneity biases from these latent heterogeneity components

are a substantial estimation concern.

Second, because of the large amount of variation in risk and wages, it is possible to more

precisely estimate how the MVSL changes as the same workers face very different levels of

risk. The vast majority of studies assume a linear relationship between risk and earnings. This

linearity assumption is described by Ekeland, Heckman, and Nesheim (2002) as ‘arbitrary and

misleading’,8 and Ekeland, Heckman and Nesheim (2004) show that the assumption is a cause

of major identification problems in hedonic models. Estimates from this setting suggest that the

MVSL depends strongly on the level of risk, falling by 78%, from $6.0 million to $1.3 million,

when the risk of death rises from 1.2 to 4.1 (25th percentile to 75th percentile) deaths per 1,000

FTE worker-years. Since the estimates are identified by within-job variation, this finding is not

a result of sorting on heterogeneity in aversion to fatal risk, but instead implies that workers’

aversion to marginal increases in risk falls as the level of risk rises, consistent with patterns of

risk-taking behaviors in other high-risk settings (Gertler, Shah, and Bertozzi, 2005).

Although this finding comes from a unique sample of individuals, if it were to hold more ge-

nerally, a question for future research, this would have substantial implications for the efficiency

of spending on a broad range of safety and public health policies. In general, efficient allocation

of public safety spending equates the marginal cost of reducing fatalities to the marginal wil-

7Such as Kniesner, Viscusi, and Ziliak (2010)
8This assumption is implicit in nearly all research on the value of statistical life (VSL) that describe ‘The VSL’

as a fixed value.

4



lingness to pay. These findings suggest that willingness to pay decreases as baseline mortality

risk levels increase, which implies complementarities in the benefits of improving safety. That is,

implementing a policy that reduces mortality rates increases, rather than decreases, the benefits

of subsequently reducing other competing mortality risks. This may seem to be a surprising

finding, but it is conceptually consistent with what Pratt and Zeckhauser (1996) call the ‘high-

payment’ effect, a theoretical effect suggesting that higher concentrations of mortality risk could

increase the marginal utility of income and reduce willingness to pay for risk reductions. If this

pattern holds generally in the population, it would suggest that it may be possible to improve

the efficiency of safety policies by evaluating portfolios of policies collectively and considering

the marginal benefits of safety relative to baseline risk levels.9

The paper proceeds as follows: Section 2 provides an overview of the identification strategy.

Section 3 provides details on the empirical setting and institutional features of the industry

that are relevant to the model and estimation, and describes the survey and other data sources.

Section 4 presents the empirical models and results. Section 5 concludes.

2 Identification in Hedonic Wage Models

This section provides a brief theoretical and illustrative overview of the two key identification

problems that I address in the paper, omitted variable bias due to unobserved differences across

jobs, and endogenous job-mobility. The key challenge is that these two sources of bias can be

interdependent—attempts to reduce the first form of bias can strongly exacerbate the second

form, leading to a net increase in bias. I describe the empirical strategy used in this paper, and

explain how it addresses each of these two problems.

2.1 Theoretical Framework

Rosen (1974) describes the first fundamental identification problem for hedonic wage models,

which Ekeland, Heckman, and Nesheim (2004) also expound upon. The basic challenge is that

if workers have heterogeneous preferences and/or firms have heterogeneous technology, then in

a perfectly competitive labor market the equilibrium hedonic price function is determined by

a weighted average of the curvature of firms’ isoprofit functions and the curvature of workers’

indifference curves, where the weights depend on the relative variances of the distributions

of unobserved worker and firm heterogeneity parameters. The main source of difficulty for

identification is that the distributions of heterogeneity parameters are unknown.

9Of course, policies that consider only efficiency could have potentially inequitable implications. For example, if
willingness to pay for safety is increasing in income, a pure efficiency argument would imply spending more public
resources per life saved in high income areas. Although the White House’s Office of Management and Budget
requires federal agencies to use estimates of the VSL in calculating the benefits of significant safety policies (See
Federal Register Vol. 67, No. 60, March 28, 2002, p. 15044 and Executive Order 12866,) federal policies tend to
use uniform VSLs rather than adjusting for demographics, where efficiency conditional on this equitable restriction
occurs when the marginal cost of safety equals the average marginal willingness to pay. However, the choice of
VSLs differs substantially across policies, providing scope for policies to consider the average characteristics of
the affected populations, including the baseline mortality rate of the population.
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Figure 2: Wage-Risk Variation with Search Frictions

However, Rosen (1974) and Ekeland, Heckman, and Nesheim (2004) describe special cases

in which only one form of unobserved heterogeneity exists, which simplifies the identification of

workers’ preferences. Most of the empirical hedonic wage literature has implicitly imposed the

assumptions required for these special cases by abstracting from unobserved heterogeneity in firm

technology. Moreover, the additional assumptions of perfect competition and frictionless search

required for identification in the Rosen model have caused added concern about the unbiasedness

of empirical estimates of workers’ preferences.10 As Hwang, Mortensen and Reed (1998) show,

when labor markets are frictional then unobserved firm heterogeneity causes common approaches

to estimating compensating wage differentials to yield severely biased estimates of workers’

preferences, even if workers are homogeneous. The intuition behind this problem is that if

search is frictional and heterogeneous firms offer different levels of pay to homogeneous workers,

then on average when a worker voluntarily changes jobs they experience a change in unobserved

firm pay, which theory suggests should be correlated with any change in observed amenities. This

correlation between changes in unobserved firm pay and changes in amenities causes endogeneity

bias in the estimation of the implicit wage price of the amenities.

To see this problem graphically, consider the labor market depicted in Figure 2 in which a

worker is initially employed at a job 1, in which I1 depicts the isoprofit function of the firm

at which she is employed, U1 is her indifference curve over wage and fatality rate pairs (where

higher fatality rates are bad), and their tangency point is (W1, R1). Over time the worker learns

about her abilities and comparative advantages, samples posted wage-safety offers from other

firms, and discovers that she is better suited to work in job two. Job two lies on a higher offer

curve, I2; that is, for any given level of the fatality rate, firm two is willing to pay her a higher

wage than firm one. The difference between offer curve one and offer curve two is consistent

with the existence of high wage firms (firm 2) and low wage firms (firm 1), a well-established

10See, for example, Hwang et al. (1998), Sullivan and To (2014), Dey and Flinn (2008), and Bonhomme and
Jolivet (2009).
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empirical fact of labor markets (Abowd, Kramarz, and Margolis, 1999).

Switching from job one to job two not only increases wages, but if safety is a normal good then

as wages rise due to changes in firm pay, workers optimally sort into safer jobs. This leads the

tangency point (W2, R2) to move to the left of (W1, R1). Using a standard within-worker model

to estimate the compensating differential for safety in this case would yield an estimate equal to

the slope of the line labeled ‘Expansion Path’. This estimate wrongly suggests that the worker

likes fatal risk, when in fact her indifference curves show that the opposite is true. The reason

for this bias is that instead of the classical offer function in Rosen (1974), the presence of search

frictions causes realized job matches to be observed in a field of heterogeneous isoprofit functions

over which the worker is gradually searching for the job that yields the highest utility. This is one

specific motivating example, but any form of unmodeled heterogeneity that is correlated with

both job mobility decisions and amenities can lead to the same type of identification problem.

For example, if workers are more likely to exit jobs with low match quality, and there is a

correlation between amenities and match quality, this could cause a similar form of endogeneity

bias.

Does this kind of problematic wage variation exist empirically? The empirical literature has

extensively documented firm and match-specific wage effects with the exact properties depicted

in Figure 2. Sorensen and Vejlin (2013) estimate that unobserved worker heterogeneity explains

about 37.7% of the total variation in wages in Denmark, while firm effects explain 14.3% and

match effects explain 10.9%. Woodcock (2011) uses US data from the LEHD and estimates

that the rate of earnings growth among workers who experience job-to-job transitions is about

three times larger than that of job stayers, and among switchers about 60% of the differential

earnings growth is due to sorting into higher paying firms, while an additional 29% is due to

sorting into jobs with larger pure match effects. As a consequence, when identifying variation

in a hedonic wage model is limited to within-worker job switches, the relative importance of

sorting on the determination of wages increases substantially. Abowd, Kramarz and Margolis

(1999) show that both unobserved worker and firm characteristics explain substantial shares

of the residual variation in wages in France, and Card, Heining and Kline (2013) show similar

patterns in Germany. These studies all suggest the existence of “good” jobs and “bad” jobs,

empirically demonstrating the importance of job search and unobserved heterogeneity in the

determination of wages.

2.2 Empirical Framework and Omitted Variable Bias

The approach that I take to solving this identification problem is to make use of the unusually

large amount of within-match variation in wage-risk pairs in this labor market. The basic

empirical specifications that I estimate are variations of the following fixed effects model:

ln(wijt) = xitβ + f(ajt; γ) +Mi,J(i,t) + εijt (2)
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where

Mi,J(i,t) ≡ θi + ΨJ(i,t) + Φi,J(i,t)

ln(wijt) is the log earnings of worker i = 1, . . . , N who is employed at establishment j at time t,

xit is a vector containing time-varying characteristics of worker i, ajt are time-varying non-wage

amenities of the job at which worker i is employed at time t, and f is a function of job amenities

with a vector of parameters γ.

Following the wage decomposition model proposed by Abowd, Kramarz, and Margolis (AKM,

1999), θi is the pure person effect, and ΨJ(i,t) is the pure effect of establishment J at which worker

i is employed at time t. Φi,J(i,t) is the pure worker-establishment match effect, introduced by

Woodcock (2011). In practice, since the values of θi, ΨJ(i,t), and Φi,J(i,t) are not the objects of

interest in this hedonic wage model, the main specification includes an aggregate match effect

Mi,J(i,t), which absorbs worker effects, establishment effects, and the pure match effect. However,

I also estimate models with just θi, just ΨJ(i,t), and the AKM two-way fixed effects model with

both of these terms, in order to diagnose the bias components that arise under alternative models

that can be estimated in more general labor-market settings.

The advantage of Equation 2 can be seen intuitively by returning to Figure 2. If labor market

frictions lead to variation in utility across jobs, as depicted by the difference between utility levels

U1 and U2, and if this unobserved change in utility is included in the error term, then γ is likely to

be a biased estimator of the compensating wage differential. The key empirical question centers

on the level at which variation in utility is correlated with workers’ job mobility decisions. If

labor markets differ from the classical model of perfect competition due to heterogeneity in

firm pay, ΨJ(i,t), causing utility to systematically vary across firms, then conditioning on θi and

ΨJ(i,t) in the hedonic AKM model absorbs all of the variation in wages upon which workers sort.

This allows γ to be identified for the subset of non-wage amenities ajt that vary within firms, as

long as this complete subset ajt is included in the model. This conclusion can be seen in Hwang

et al. (1998, Equation 27), who show that including only θi and ajt in such a model causes a

bias component that is perfectly collinear with ΨJ(i,t).

However, if match quality is also an economically important determinant of workers’ job

mobility decisions, then the origin and destination jobs associated with a voluntary job transition

may still have systematically different levels of utility after conditioning on θi and ΨJ(i,t). In

this case, the AKM specification may not fully eliminate bias in the estimation of γ. Since

Equation 2 also controls for pure match effects, this specification weakens the identification

assumptions by allowing for arbitrary unobserved heterogeneity in utility across jobs, as long as

there is variation in non-wage amenities ajt within matches, and these amenities are included in

the model.

A related paper that evaluates the importance of these two potential threats to identification

in a more general labor market setting is Lavetti and Schmutte (2018). They develop a frictional

search model, building upon Hwang et al. (1998) and Card et al. (2017), in which workers

have unobserved idiosyncratic preferences for jobs, leading both employers and occupations
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to be differentiated.11 The model endogenizes firms’ choices of occupation-specific wages and

amenities, which yield reference utility levels to workers. Under functional form assumptions

on indirect utility and unit labor costs,12 they show that if workers receive retention offers

from their incumbent firms with the same probability at which they receive outside offers (as is

common in wage posting models, such as Card et al., 2017) then the additively separable hedonic

AKM model is identical to the structural profit maximizing log wage equation in equilibrium.

Moreover, they show that γ is an unbiased estimate of the marginal willingness to accept fatal risk

in this case, providing a preference-based interpretation of the compensating wage differential.

However, Lavetti and Schmutte (2018) show that if firms have an incumbency advantage in

retaining employees, as may occur if workers have incomplete information about job opportuni-

ties at outside employers, then the profit maximizing log wage equation contains a match-specific

component that affects the probability of workers changing jobs. In this case they show that

the inclusion of Φi,J(i,t), as in Equation 2, is necessary to absorb this match-level variation and

recover an unbiased estimate of the marginal willingness to accept fatal risk. A general challenge

with estimating this model is that it requires variation in ajt within a worker-firm match, rather

than simply within a firm. This type of variation is fairly uncommon in labor markets, making

it difficult to correct this type of endogeneity.

The advantage of the labor market setting studied here is that there is a very large amount

of variation in fatality rates within worker-firm matches over time. Moreover, the terms of

employment contracts change very frequently across fishing trips within each match, allowing

wages to adjust correspondingly. This unique variation makes estimating Equation 2 feasible,

and relaxes the identification assumptions relative to the two-way fixed effects specification

by allowing estimates to be robust to more general forms of labor market imperfections and

search frictions. To be clear, this model does not eliminate biases under every possible form of

labor-market imperfection. For example, if wages are determined by bilateral Nash bargaining

rather than wage posting, the identification conditions would require that the Nash bargaining

parameters do not vary within match in a way that is correlated with safety.

Although the evidence is limited, the latent wage components in Equation 2 have been

shown to have substantial effects on estimated compensating wage differentials. A small number

of studies have used panel data from workers who switch jobs in order to control for worker

effects θi. All of these studies find that including worker effects significantly decreases the

estimated compensating differential. Brown (1980) uses data from young male job-switchers in

the NLSY and finds within-worker estimates that are statistically indistinguishable from zero,

while Kniesner et al. (2012) find that the VSL implied by the compensating wage differential

decreases from about $29 million to about $6 million when worker heterogeneity is removed

using PSID data. Tsai, Liu and Hammitt (2010) and Lavetti and Schmutte (2018) find similar

11The model is also related to the hedonic search models studied by Sullivan and To (2014), Dey and Flinn
(2008), and Bonhomme and Jolivet (2009).

12Specifically, sufficient assumptions are that indirect utility is additively separable in log wages and amenities,
as in Hwang et al. (1998), and log unit labor costs are additively separable in wages and the cost to the firm of
providing amenities.

9



patterns in Taiwanese and Brazilian data, respectively, using a two-way fixed effects model.

3 Empirical Setting and Data

The target population that I focus on in the survey includes male commercial fishing deckhands

between the ages of 22 and 55 who worked on fishing vessels that conducted business in the town

of Dutch Harbor, Alaska, between 2003 and 2009. Dutch Harbor has been the largest seafood

processing port in the US for over twenty years, and has a large, active labor market for fishing

deckhands. Most deckhands who work in Bering Sea fisheries reside throughout the pacific

northwest, and travel to the fisheries each season. Only 20.7% of the population of commercial

deckhands lives in Alaska, and 64.5% lived in either California, Washington, or Oregon.

3.1 Sources of Variation in Safety and Earnings

The key empirical features of this labor market are the large variations in fatality rates over

time, and the accompanying variation in hourly earnings. There are multiple dimensions that

contribute to the variations in fatality rates. The first is seasonal variation within years, which

is driven in part by weather patterns. The majority of deaths occur due to hypothermia and/or

drowning, and this source of risk depends strongly on the size of waves and the temperature

of the water. Appendix Figures A3 and A4 show that waves more than double in average

height between summer and winter months, and the water temperature drops to nearly zero

degrees Celsius. Correspondingly, there is a five-fold increase in the average fatality rate from

the summer to the winter. Although it may seem strange to choose to fish during the winter,

the timing of fishing seasons is regulated to minimize interference with the procreation and

sustainability of each species, so seasons for different species are spread throughout the year.

This makes much of the seasonal variation in safety beyond the control of either workers or

firms.

Second, there are also across-year intermediate-term weather patterns, primarily La Niña

and El Niño patterns, that affect ocean currents and are correlated with fatality rates. These

oscillating weather systems contribute to across-year patterns of variation in safety.

Finally, there were also reductions in fatality rates over time caused by policy changes. The

first major change occurred in 2005, when some open-access fisheries were converted to a quota-

based tradeable permits system. This reduced the incentive to race against other vessels, since

each vessel had protected property rights, allowing vessels to take greater safety precautions.

Second, in 2006 an important Coast Guard dockside safety protocol was revised following a

high-profile accident that led to five fatalities.13 Lincoln et al. (2013) show that these and other

13In 1998 the Coast Guard implemented a mandatory Dockside Stability and Safety Compliance Check Exa-
mination in BSAI fisheries. The examination reviewed the engineering designs of each vessel to assure that they
were sufficiently stable given the fishing gear on deck and had proper lifesaving equipment on board before they
were permitted to begin fishing. In January 2005 the F/V Big Valley skipped the mandatory inspection and left
port with far more crab pots on deck than the stability requirement would have allowed, and subsequently sank
killing five of the six crew members. This event contributed to a 2006 review and revision of the examination
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related safety policies caused a gradual but substantial improvement in occupational safety

throughout Alaska. Consistent with this pattern, in my data a regression of the fatality rate on

an annual linear time trend gives a coefficient of -0.21 [SE 0.05] deaths per 1,000 worker-years.

These policy changes cause variation in safety in addition to the weather-based channels. To

quantify the relative contributions of each source of variation, I regress the monthly fatality rate

on a set of linear time trends that allow for jumps corresponding to the major policy changes,

as well as year and month effects, and then estimate the partial R2 of the different sets of

explanatory variables in this model. The partial R2 of year indicators and month indicators

alone are 0.16 and 0.07, respectively. The partial R2 of a linear time trend with breaks at

the two major policy changes is 0.19. This suggests that each of the three sources contributes

meaningfully to the identifying variation in safety.

Variation in fatal risk levels is also accompanied by substantial hourly earnings premia, as

shown in Figure 1. An institutional feature of this setting is that all deckhands are compensated

by revenue-sharing rather than fixed salaries, which creates some uncertainty about hourly

earnings. Since the equilibrium compensating wage differential depends on what workers expect

to earn at the time they make labor supply decisions, it is important to consider the nature of

the variation in wages, and the extent to which the variation is anticipated ex ante.

Worker earnings can be expressed as the output price times the quantity caught times the

worker’s contracted revenue-sharing rate. Output prices vary within job matches primarily

based on the species of fish being caught, which is largely known to the worker and firm ex

ante. The same worker-vessel pair may catch salmon in the summer and crab in the winter,

and these products have very different output prices. Although there is also variation in prices

within species over time, vessels contract with processors before the start of a season to deliver

a specified amount of catch for a fixed price by a predetermined date, making the total revenue

of the vessel reasonably predictable. To quantify this source of variation in earnings, I infer

the total vessel revenue from each worker job spell as the worker’s reported earnings divided by

their share rate.14 I then estimate a decomposition of this variation, and find that 27% of the

total variation in inferred vessel revenue occurs within matches, and 46% of the total variation

is explained simply by the beginning and ending months of a job spell, suggesting that the

variation is predictable ex ante. Of the within-worker variation in inferred vessel revenue, 75%

is within match.

There is also a large amount of within-match variation in revenue sharing rates—of the total

variation in revenue share rates, 60.2% is within-match. This variation is largely driven by the

species being caught, and the experience of the worker. For example, the average revenue share

when fishing for salmon is 12.9%, but is only 5.4% when fishing for crab. In Appendix Table A3

I show estimates from regressing the revenue share rate on a cubic in experience within Bering

Sea fisheries separately by species. I find that the rate at which revenue shares increase with

policy to improve its effectiveness.
14Worker earnings are actually equal to a share of revenue net of certain limited costs such as food and fuel, so

the inferred revenue is this net amount.
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initial experience is fairly large, especially in Shellfish and Groundfish fisheries. The variation

in earnings caused by share-rates is known ex ante, and can affect the compensating wage

differential.

3.2 Survey Data

The main source of labor-market data come from a survey that I conducted of deckhands wor-

king in Bering Sea fisheries. The survey was conducted in several rounds, including mailing

components and a field survey in Dutch Harbor, Alaska. The survey includes questions on

demographics, income, wealth, subjective risk perceptions, and recall-based panel questions on

employment histories for all jobs, fishing and other. Regarding fishing-related employment, de-

tailed questions were asked about each trip taken, including the month(s) during which the trip

occurred, the species fished, the number of days spent fishing, the vessel name, all aspects of

the labor contract, the average number of hours worked per day, and total earnings.

The survey data include 133 respondents who worked a total of N=1,351 fishing job spells

between 2003-2009. Of these respondents, 80 were in the direct survey group completed in

October 2009, at the beginning of the Red King Crab season, and the response rate for this survey

was 62.2%. This sample represents about 20 percent of the relevant population of deckhands

who worked in this fishery in 2009. The remaining 53 respondents were from two separate

rounds of mailing interviews. The first round was sent to individuals who purchased commercial

fishing licenses in Dutch Harbor at any point between 2002-2008, and a second mailed directly

to all fishing vessels that registered for the 2010 Opilio Crab season. The response rates for

these two mail-based components were 4.2%15 and 16%, respectively.16 Although there may be

differences in responses across survey waves, in fixed effects specifications the worker or match

effects absorb any such differences.

Since the response rates on the mail-based components of the survey are quite low, I test

in Appendix Section 1.4 whether the main estimates differ across survey formats. To be clear,

since the entire target population of the survey is already non-representative of US labor mar-

kets generally, a low response rate does not add to the non-representativeness of the sample.

Nonetheless, one caveat to the analyses is that the estimates may be sensitive to differences in

unobservables between respondents and non-respondents. This concern is ameliorated to some

extent by the results in Lavetti and Schmutte (2018), who evaluate the importance of worker

and firm effects in estimating compensating wage differentials using a complete census of formal

jobs in Brazil, and find similar patterns of biases in that setting.

Table A2 reports demographic summary statistics of the sample. The median deckhand in

the sample is 37 years old, white, and has less than a college graduate education. Slightly more

than half of workers are married, and about the same percentage have children. Similar to the

15The sampling frame for this survey was derived from an Alaska Department of Fish and Game (ADFG)
database of commercial fishing licenses sold, which provided the name, mailing address, and location of license
purchase for every commercial fishermen in the state since 1988. However, the mailing addresses in the database
were several years old, and many deckhands had moved and the surveys were not forwarded.

16A copy of the survey instrument is available at http://www.kurtlavetti.com/research.
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Table 1: Summary Statistics: Survey Demographics

Age 36.99
White 85.71%
Less than HS Educ. 9.02%
High School Diploma 47.37%
Some College 39.10%
Ever Married 47.37%
AK Resident 15.91%
CA Resident 5.30%
OR Resident 7.58%
WA Resident 50.76%
Other US Resident 19.69%

N Respondents 133
N Worker-Vessel Pairs 183
N Job-Spells 1195

population of deckhands, the sample is of diverse geographic origin, with only 16% coming from

the state of Alaska, and about 64% from California, Washington, and Oregon.17

Table 2 and Appendix Table A1 report summary statistics on earnings and work experience.

On average, each respondent worked 10.2 fishing job-spells during the survey window, and about

6.5 job-spells per vessel. About 74% of workers in the sample had at least one job outside of

fishing during the survey window. Hourly earnings are calculated by dividing earnings per job-

spell by hours worked, and the term ‘wage’ is used for brevity. The mean hourly wage from

outside jobs held by this subsample was $13.61, which was substantially lower than the mean

fishing hourly wage of $54.16.18 The mean annual earned income from all sources in the sample

was $91,263.

Table 2: Summary Statistics: Earnings

Mean S.E.

Percent of Respondents with Non-fishing Job 74.44%
Conditional Non-fishing Hourly Wage $13.61 [$7.74]

Mean Fishing Job Spells per Respondent 10.15
Fishing Hourly Earnings (unweighted) $35.26 [$28.04]
Fishing Hourly Earnings (weighted) $54.16 [$61.65]
Income per Fishing Job Spell $34, 980 [$28, 627]
Hours Worked per Fishing Job Spell 955 [817]

Individual Annual Income, All Sources $91, 263 [$58, 379]

Note: Mean fishing hourly earnings are weighted by the length of job spells.

17There are no deckhands in the sample that were not US residents at the time of survey.
18This is a weighted average, weighted by job-spell duration measured in days.
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Since the majority of the sample was collected during a field survey at one point in time,

the quantitative results are not necessarily generalizable to the entire population of Bering Sea

deckhands, much less to labor markets more broadly. There are, however, some limited data

available about the population of deckhands from an administrative state commercial fishing

license database, which I use to test the representativeness of the sample. These data include

state of residency and the number of years in which each person purchased a commercial fishing

license in Alaska. Using a chi-share test I fail to reject the hypothesis that the survey sample is

of different geographic origin (p-value 0.53) or has a different distribution of potential experience

(p-value 0.24).

3.3 Fatality Data and Non-Fatal Injury Data

Data on fatalities come from the Alaska Occupational Injury Surveillance System (AOISS), which

is an administrative database of every individual work-related traumatic injury and fatality in

the state of Alaska. The AOISS is maintained by the National Institute for Occupational Safety

and Health, and collects information on each injury and fatality from US Coast Guard reports,

Alaska State Trooper reports, medical examiner documents, and death certificates. The NIOSH

provided a subset of this database containing information on every commercial fishing fatality

from 1990-2007. The data include the longitude and latitude of each accident, the circumstances

of the accident, the date of the accident, vessel characteristics, the type of fishery, and the number

of fatalities. Fatality rates are calculated in each month-by-year by combining AOISS fatality

data with data from the NIOSH estimating the number of full-time equivalent workers in each

Alaskan fishery in each year, and data from the Alaska State Department of Labor on the number

of deckhands working in each fishery in each month of the year. The NIOSH data are used to

adjust the monthly Department of Labor counts of workers to estimate the number of full-time

equivalent workers.

The AOISS has a few advantages over datasets that have been used in the past to study

occupational fatalities. First, the data contain individual fatal accidents from a single well-

defined labor-market in which workers have the same occupation. Studies that focus on more

general labor markets often use data from the Bureau of Labor Statistics’ Census of Fatal

Occupational Injuries, where fatal accidents are linked to industry codes or occupation codes

that may have some measurement error. Knowing that a fatal accident occurred on a commercial

fishing vessel at a specific longitude and latitude, along with a description of the accident, there

is less concern about potential mismatching in calculating fatality rates in this single-industry

setting. The AOISS microdata also permit the estimation of seasonal changes in fatality rates

by allowing matching of contemporaneous weather conditions to the date and specific location

of fatal accidents.

I also use administrative data on non-fatal injuries from the Alaska Trauma Registry (ATR)

to test the sensitivity of estimates to the inclusion of non-fatal injury rates, including measures

that account for injury severity, the duration of hospital stays, and the medical costs associated

with each injury. The ATR data include all work-related injuries in the state that led to acute
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care, and are sufficiently detailed to identify which injuries were related to commercial fishing

in the regions of interest. These data are unusually rich in providing multiple measures of the

severity of injuries. Most previous studies that include non-fatal injuries are only able to control

for average injury rates, leaving variation in injury severity as a form of measurement error.

4 Empirical Estimation and Results

I begin by describing the empirical specification of Equation 2, followed by the main estimation

results. The results replicate the pooled cross-sectional and worker effects specifications that are

common in the literature, along with a firm effects model and the main match effects model. I

then discuss a set of residual diagnostic plots that show that endogeneity bias comes primarily

from latent worker and firm effects, and suggest that there is little evidence that omitting pure

match effects causes endogeneity bias. I describe how the estimated marginal aversion to fatal

risk changes with the level of risk, and provide a variety of robustness checks related to potential

measurement error in fatality rates, non-random selection of worker into seasons of the year,

and the measurement of non-fatal injury severity.

4.1 Basic Model and Results

Figure 3 shows a binned scatterplot of the unconditional relationship between log wages and

fatality rates in the data. The fitted semi-parametric function suggests that log wages are

increasing in the fatality rate, as expected, and that the slope of the wage profile decreases as

the fatality rate increases.

To capture these features of the data, the empirical specification of Equation (2) that I

estimate is the following fixed effects model:

ln(wijt) = Rtγ1 +R2
t γ2 +R3

t γ3 +R4
t γ4 +RZerotγ5 + InjRatetγ6 +MedCosttγ7 (4)

+MeanWavetγ8 + V arWavetγ9 +AirTemptγ10 + xitβ +Mi,J(i,t) + εijt

The nonwage amenity component f(ajt; γ) includes a quartic polynomial in the monthly fatality

rate, R, a binary indicator RZerot that equals one when R equals zero, two measures of non-

fatal injury rates, and three weather variables that are correlated with risk but potentially have

their own compensating wage differentials. The quartic specification was chosen by testing the

incremental explanatory power of each polynomial term using an orthogonalized polynomial

test. The orthogonalized quartic term is statistically significant, but the quintic term is not.

The purpose of RZerot is to control for the fact that in months with zero fatalities, workers’

ex ante expectations were very likely not zero, and γ5 captures the effect of this measurement

error. I also use several other approaches to assess potential measurement error in the fatality

rate, which I discuss in Section 4.4.

The first non-fatal injury variable InjRate is the monthly number of traumatic non-fatal

injuries per 1,000 FTE worker-years, and the second variable, MedCost, is the monthly average
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Figure 3: Binned Scatterplot of Log Wage vs. Fatality Rate

Notes: Fatality rates measured in deaths per 1,000 full-time equivalent worker-years.

hospital costs associated with non-fatal injuries measured in $100,000s per 1,000 FTE worker-

years. Costs include payments from all sources, and are calculated using allowed reimbursement

rates for insured patients. Both of these variables are constructed using individual events data

from the administrative records on commercial fishing accidents in the Alaska Trauma Registry.

The weather variables include MeanWave, the mean wave height, V arWave, the within-

month variance of hourly average wave heights, and AirTemp, the average air temperature.19 xit

includes industry-specific fishing experience, experience squared, and year effects. Year effects

control for annual variation in wages associated, for example, with the policy changes in BSAI

fisheries or changes in fish prices, which affect all workers. Mi,J(i,t) are job-match effects, which

are modeled as fixed, and absorb the latent worker, establishment, and pure match heterogeneity.

The fixed effects model allows all three components of latent heterogeneity to be correlated with

the fatality rate and weather conditions, and allows for the possibility of non-random sorting of

workers and vessels.

The inclusion of weather variables in the model is important, because weather may affect

the desirability of a job, creating a direct effect on wages. For this reason, weather conditions

cannot be used as instrumental variables, as doing so would violate the exclusion restriction.

As Appendix Table A5 shows, the best-fitting weather-based model explains only 35% of the

variation in fatality rates, and policy-based variation assists in separately identifying the effects

of safety and weather conditions on earnings. This approach to estimating compensating diffe-

19Historical weather data come from NOAA weather buoy station #46035, located in the Bering Sea, which
provides hourly weather data dating back to 1985.
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rentials for multiple job amenities is not uncommon—Bonhomme and Jolivet (2009) estimate

compensating differentials for five different job characteristics that are also correlated with each

other. By including match effects, all static unobserved aspects of the job are controlled for,

making it easier to narrow attention to amenities that change within jobs over time. Conditional

exogeneity in this model requires the inclusion of any time-varying amenities that are correlated

with wages and fatality rates.

To show the relative impact of each of the latent heterogeneity components, I first estimate

a pooled cross-sectional version of Equation (4) that also includes time-invariant observable

characteristics: education, marital status, and race. The results from this model are shown in

column (1) of Table 3. All four of the quartic risk components are statistically significant, and

an F-test rejects the null hypothesis that wages are a linear function of fatality with a p-value

of 0.016.

Table 4 shows the MVSLs implied by the parameter estimates in column (1) of Table 3 at

the 25th, 50th, and 75th percentiles of the distribution of fatality rates and at the mean fatality

rate. MVSLs are calculated as:

MV SL(R) =
∂w(R)

∂R
∗ 1, 000 ∗ 2, 000

Since w(R) is an hourly earnings measure, while R is measured as the number of deaths per

1,000 full-time full-year equivalent workers, the derivative must be scaled by 1,000 workers and

by 2,000 hours per full-time equivalent worker-year. The second step is to estimate ∂w(R)
∂R . Since

Equation 4 is a log wage model, taking the derivative with respect to R gives:

1

w

∂w(R)

∂R
= γ1 + 2Rγ2 + 3R2γ3 + 4R3γ4

Using γ̂ and the mean wage to estimate ∂̂w(R)
∂R , and then rescaling this derivative gives the

M̂V SL. Standard errors on the estimated MVSL are calculated using the delta method.

The pooled estimates imply an MVSL of $12.6 million [SE = 2.8] at a fatality rate of 1.

Neither the average non-fatal injury rate nor the average non-fatal medical spending has a

significant effect on wages. Mean wave heights and air temperatures also have no significant

effect, but higher variance in wave heights has a significant positive effect on earnings.

Column (2) adds fixed worker effects and drops the time-invariant characteristics from the

pooled model. This model is analogous to the longitudinal hedonic wage models that have been

estimated by Brown (1980) and Kniesner et al. (2012). The fixed effects specification accounts

for unobserved heterogeneity across workers that could otherwise cause omitted variable bias.

Relative to the pooled model, the estimated coefficients on the fatality rate terms all shrink

towards zero, and only the first-order component is significant at the 5% level. The MVSL falls

by more than half, to $5.8 million [SE = 2.1] at a fatality rate of 1. This is consistent with

evidence from Abowd, Kramarz, and Margolis (1999) and Kniesner et al. (2012) that unobserved

heterogeneity across workers explains a substantial share of the residual variation in wages, and
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Table 3: Fixed Effects Models, Nonlinear in Fatality Rate

(1) (2) (3) (4)
Dependent Variable: ln(Wage)

Fatality Rate 0.313*** 0.134** 0.216*** 0.153***
[0.069] [0.053] [0.053] [0.049]

Fatality Rate Sq. –0.062*** –0.023* –0.041*** –0.026**
[0.014] [0.012] [0.011] [0.011]

Fatality Rate Cu. 0.005*** 0.002* 0.003*** 0.002**
[0.001] [0.001] [0.001] [0.001]

Fatality Rate 4th –0.000*** –0.000* –0.000** –0.000**
[0.000] [0.000] [0.000] [0.000]

Non-Fatal Injury Rate –0.008 –0.004 –0.007 –0.004
[0.008] [0.006] [0.007] [0.006]

Injury Medical Costs 0.051 0.031 0.059** 0.040
[0.032] [0.025] [0.029] [0.026]

Mean Wave Height 0.106 0.282*** 0.222** 0.284***
[0.093] [0.063] [0.084] [0.071]

Variance of Wave Height 0.109** 0.012 0.093* 0.041
[0.052] [0.045] [0.049] [0.041]

Air Temperature –0.015 0.001 0.009 0.012
[0.014] [0.011] [0.012] [0.011]

Worker Effects N Y N Y
Vessel Effects N N Y Y
Match Effects N N N Y

N 1,195 1,195 1,195 1,195
N Clusters 128 128 183 183
R-Sq 0.318 0.733 0.690 0.791

Notes: Fatality rate is measured as the number of fatalities per 1,000 FTE worker-years. Variance of Wave Height
is the within-month variance of hourly wave height measurements. ‘Non-Fatal Injury Rate’ is measured as the
number of traumatic injuries per 1,000 FTE worker-years. ‘Injury Medical Costs’ is the average total cost of
hospital care for non-fatal injuries, measured in $100,000s based on reimbursement rates, per 1,000 FTE worker-
years. Model 1 also includes education, race, and marital status. All models include year effects, experience,
experience squared, and a zero fatalities indicator, and are weighted by the length of job spells. Standard errors
are clustered at the worker level in Models 1-2, and at the match level in Models 3-4. *** Significant at the .01
level, ** significant at the 0.05 level, * significant at the 0.10 level.

this residual variation is correlated with job amenity choices, as predicted by theory. The bias

from unobserved worker heterogeneity has the same direction and approximate magnitude as

estimates from Kniesner et al (2012) using the PSID. Wave height is also significant in this
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Table 4: MVSL Functions Implied by Fixed Effects Estimates

(1) (2) (3) (4)
Pooled Worker Vessel Match

Effects Effects Effects

MVSL ($ Millions) by Fatality Rate

R = 1.2 (25th Pctl)
$11.29 $5.29 $8.01 $6.03
[2.51] [1.83] [1.86] [1.73]

R = 1.9 (50th Pctl)
$7.57 $3.92 $5.55 $4.42
[1.71] [1.19] [1.25] [1.15]

R = 3.1 (Mean)
$3.25 $2.31 $2.70 $2.49
[1.04] [0.69] [0.78] [0.69]

R = 4.1 (75th Pctl)
$0.67 $1.34 $0.99 $1.30
[0.91] [0.65] [0.68] [0.61]

Notes: All estimates correspond to the respective Models (1)-(4) in Table 3. Fatality rates are measured as
the number of fatalities per 1,000 FTE worker-years. MVSL estimates are measured in millions of 2009 dollars.
Standard errors are calculated using the delta method.

model, and suggests a large compensating wage differential of about 28% per meter of average

wave height.

Including establishment (vessel) effects instead of worker effects identifies the compensating

differential using variation across workers during a given season, and over time across seasons

for the same vessel, controlling for time-invariant unobserved differences in vessel productivity.

Column (3) reports estimates from this model. All four of the quartic components are statis-

tically significant at the 5% level, and the MVSL is higher than the worker effects estimate,

at $8.9 million [SE = 2.1] at a fatality rate of 1. Non-fatal injury medical costs also become

significant in this model. The coefficient suggests that a $100,000 increase in the total cost of

injuries per 1,000 FTE worker-years is associated with 5.9% higher wages.

Finally, column (4) presents estimates of Equation 4, the main specification. The model

includes match effects, which absorb both worker and establishment effects, and allow for non-

random assignment of workers to firms and mobility between jobs to be correlated with the

components of unobserved heterogeneity. The results show that all four of the estimated fatality

rate polynomial terms are again significant, and together they imply an MVSL of $6.6 million

[SE = 1.9] at a fatality rate of 1. Average wave height also remains significant.

The correlation between unobserved worker, establishment, and match effects and the expla-

natory variables inflates the MVSL estimate in the pooled model upward by 91% of the match

effects estimate. However, the components of the change in bias are partially offsetting. Relative

to the match effects model, the within-worker model yields estimates that are about 12% too

low.
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To gain some intuition for why this occurs, I estimate θi and ΨJ(i,t) directly using a two-

way fixed effects specification that omits Φi,J(i,t). I then estimate the correlations between the

components of log wages, including the portions explained by time-varying observables, job

amenities, worker effects, and firm effects. Appendix Table A4 shows the full set of correlations.

I find that θi is positively correlated (0.08) with the non-wage job amenity component, but

ΨJ(i,t) is negatively correlated with the amenity term (-0.60). The signs of the covariance terms

provide some information about the directions of the bias components from models that omit

each of the terms, suggesting that the omission of worker effects is likely to generate a positive

bias component, while the omission of establishment effects generates a negative one. This is

consistent with estimates from the pooled model being higher than estimates from the within-

worker model, and MVSL estimates from both the establishment and match effects models being

higher than the worker effects estimates. Of course, these correlations come from the AKM

specification, which has slightly stronger exogeneity assumptions than the main specification

that also includes pure match effects.

4.2 Residual Diagnostics

Figures 4 and 5 show graphically why the pooled and worker effects models, respectively, produce

biased estimates of γ. For the purpose of visualizing the problematic correlations between

error components and included variables that causes endogeneity bias, I estimate the AKM

specification of Equation 2 to recover the nuisance parameters θi and ΨJ(i,t). This model omits

the pure match effect Φi,J(i,t).

Figure 4: Average Pooled Residual by Sextile of Worker Effect and Xβ + f(A; γ)

Notes: Plot depicts average residuals from Model (1) in Table 3 by sextile of the worker effects distribution
estimated by a two-way AKM fixed effects model and by sextile of the predicted wage from Model (1).

In Figure 4 I then plot the average residuals from the pooled model as a function of the
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explained variation in log wages in the pooled model, Xβ + f(A; γ), and the estimated worker

effect θi from the AKM model. Since θi is a component of the error term in the pooled speci-

fication, if the average residual systematically varies with respect to the joint distribution of θi

and the explained variation, this is evidence that omitting θi from the pooled specification is

likely to cause endogeneity bias. Figure 4 shows that throughout the entire distribution of the

explained variation in log wages, there is a positive correlation between the average residual and

the worker effect θi. Moreover, throughout the entire distribution of unobserved worker types

θi, there is a negative correlation between the average residual and the explained variation in

log wages, suggestive that omitting θi from the model is likely to cause endogeneity.

Similarly, Figure 5 plots the average residuals from the worker effects model as a function

of the explained variation in log wages in the worker effects model, Xβ + f(A; γ) + θi, and the

estimated firm effect ΨJ(i,t) from the AKM model. The pattern of residuals remains very similar,

suggesting that adding worker effects to the pooled specification does not eliminate the negative

correlation between average residuals and the explained variation in log wages in this model.

Figure 5: Average Within-Worker Residual by Sextile of Firm Effect and Xβ + f(A; γ) + θi

Notes: Plot depicts average residuals from Model (2) in Table 3 by sextile of the firm effects distribution estimated
by a two-way AKM fixed effects model and by sextile of the predicted wage from Model (2).

This pattern in the residuals is consistent with the form of job mobility depicted in Figure 2,

in which unobserved firm heterogeneity is correlated with amenities. The final residual diagnostic

graphs the average residual from the AKM model by sextile of the worker effect and firm effect

distributions. The figure is shown in the Appendix (Figure A1) because it looks indistinguishable

from a flat plane. Since the residuals from this model include the pure match effect term from

Equation 4, the diagnostic plot suggests little correlation between pure match effects and the

variables included in the AKM specification. Correspondingly, the parameter estimates from the
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AKM model are nearly identical to the main match effects estimates in Table 3.20 This finding

is consistent with patterns in German and Brazilian wage data documented by Card, Heining,

and Kline (2013) and Lavetti and Schmutte (2018), respectively.

4.3 The Marginal Value of Statistical Life

Several previous studies using cross-sectional data have estimated compensating wage differen-

tials for fatal risk and included a quadratic term.21 In general, these studies find that the

coefficient on the quadratic term is negative and statistically significant. What we can conclude

from such a finding in a cross-sectional setting is that people have different preferences for safety,

and the people who are least averse to occupational hazards sort into riskier jobs, consistent

with hedonic wage theory.

In contrast, consider the interpretation of a similar finding from a model in which match

effects are also included. Since match effects capture all of the static unobserved differences

across worker-firm pairs, a negative quadratic term can no longer be interpreted as evidence of

sorting based on aversion to fatal risk. If preferences are static, all of this variation is absorbed

by the match effects, along with the impacts of search frictions or firm heterogeneity. Under

the model assumptions described in Section 2.1, the estimated MVSLs from the match effects

specification can be interpreted as preferences for marginal changes in risk. Although the two

model specifications may appear similar, the implications of the estimates are very different

when match effects are included; Hwang et al. (1998) make a similar point about the inclusion

of firm effects.

The estimates from each of the models in Table 3 show how severe the restrictions imposed

by a linear hedonic wage model can be. The predicted MVSL falls sharply with the level of the

fatality rate, whereas the linear model would force the VSL to be constant, independent of the

level of risk. In the match effects model, for example, the MVSL falls from $6.0 million [SE =

1.7] at the 25th percentile of the fatality rate to $1.3 million [SE = 0.6] at the 75th percentile.

Similar patterns in the MVSL function are implied by every model in Table 3.

To assess how the linearity assumption common in the literature can bias estimates of the

MVSL, Appendix Table A6 presents a similar set of models that assume linearity in the effect

of fatality rates on log wages. In every specification the log-linear restriction causes substantial

bias relative to the more flexible main specifications. In the match effects model the estimated

MVSL is about 59% lower in the log-linear specification at the median risk level, and about 27%

lower at the mean risk level.

Since the conclusion of declining marginal aversion to fatal risk depends strongly on the

coefficients of the higher order polynomial terms, and since polynomial regressions often have

substantial correlation between terms, I also assess the sensitivity of the model by estimating

20Although the AKM model is more common in the labor economics literature, I report the match effects
specification because it produces virtually identical results, requires weaker assumptions, is easier to conceptualize
than a two-way fixed effects model.

21See Arnould and Nichols (1983), Olson (1981), Dorsey and Walzer (1983), for example.
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Figure 6: Marginal VSL vs. Fatality Rate

Notes: MVSLs are based on estimates from Table 3.

a version of Equation (4) in which the quartic fatality rate function is orthogonalized. The

orthogonalized quartic polynomial is identical to the non-orthogonalized function, except that

it imposes zero correlation between each of the fatality rate terms. The parameter estimates

from this model are order-dependent; as each higher order term is added, the coefficients on

previously included terms do not vary. This provides a conveniently direct way of testing for

the marginal impact of each term in the polynomial conditional on the lower-order terms using

the t-statistic for each term. Table 5 includes estimates for the same four models as Table 3,

but with orthogonalized polynomial terms. Column (4), for example, shows that each of the

polynomial terms is statistically significant even after conditioning on lower-order terms. All

of the MVSL estimates are similar to those shown in Table 3, since orthogonalization does not

affect the levels or derivatives of the original function.

The implication of this finding that MVSLs are declining functions with respect to fatality

rates is that when workers face high baseline levels of risk, they become less averse to marginal

increases in risk.22 This finding has important implications for the efficient allocation of public

resources devoted to safety, suggesting that improvements in safety are complementary rather

than substitutable. Although the estimates come from a narrow sample, they offer evidence on

a previously undocumented finding and expand the scope of questions that future research from

more general labor market settings can build upon.

22Note that this conclusion does not violate the convexity of preferences. An example of convex preferences
consistent with this finding would be if indifference curves in Figure 2 become flatter at high levels of risk for a
given wage.
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Table 5: Fixed Effects Models, Orthogonalized Fatality Rate

(1) (2) (3) (4)
Dependent Variable: ln(Wage)

Orthogonalized Fatality Rate 0.159*** 0.110*** 0.134*** 0.111***
[0.036] [0.025] [0.028] [0.024]

Orthogonalized Fatality Rate Sq. –0.064** –0.024 –0.039** –0.031**
[0.026] [0.015] [0.017] [0.015]

Orthogonalized Fatality Rate Cu. 0.063** 0.025 0.043** 0.034**
[0.024] [0.017] [0.015] [0.015]

Orthogonalized Fatality Rate 4th –0.084*** –0.030* –0.056*** –0.033**
[0.018] [0.017] [0.016] [0.015]

Non-Fatal Injury Rate –0.008 –0.004 –0.007 –0.004
[0.008] [0.006] [0.007] [0.006]

Injury Medical Costs 0.051 0.031 0.059** 0.040
[0.032] [0.025] [0.029] [0.026]

Mean Wave Height 0.106 0.282*** 0.222** 0.284***
[0.093] [0.063] [0.084] [0.071]

Variance of Wave Height 0.109** 0.012 0.093* 0.041
[0.052] [0.045] [0.049] [0.041]

Air Temperature –0.015 0.001 0.009 0.012
[0.014] [0.011] [0.012] [0.011]

Worker Effects N Y N Y
Firm Effects N N Y Y
Match Effects N N N Y

N 1,195 1,195 1,195 1,195
N Clusters 128 128 183 183
R-Sq 0.317 0.733 0.688 0.791

Notes: Fatality rate polynomial terms are orthogonalized using the Christoffel-Darboux formula, and are measured
as the number of fatalities per 1,000 FTE worker-years. Estimates are marginal effects of the fatality rate
conditional on observing at least one fatality. Variance of Wave Height is the within-month variance of hourly
wave height measurements. Model 1 also includes education, race, and marital status. All models include year
effects, experience, experience squared, and a zero fatalities indicator, and are weighted by the length of job
spells. Standard errors are clustered at the worker level in Models 1-2, and at the match level in Models 3-4. ***
Significant at the .01 level, ** significant at the 0.05 level, * significant at the 0.10 level
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4.4 Measurement Error in Fatality Rates

One potential concern with estimating Equation (4) in this empirical setting is that the popu-

lation of interest is quite small and fatalities are low-probability events, so the average monthly

fatality rate has a large variance. For example, observed monthly fatality rates are often zero.

The fatality rate that is relevant for estimating compensating wage differentials is the fatality

rate that workers expect at the time they accept a job. In large industries with many workers

there are typically enough fatalities for the mean fatality rate to be a good approximation to

workers’ expectations, but this assumption may not hold in the current setting. If workers ex-

pect a fatality rate that differs from the realized rate, the key variable of interest suffers from

measurement error.23

I use two approaches to assessing the potential bias from this type of measurement error.

The first approach is to use fatality rate data from multiple years, which may reduce noise and

be a reasonable representation of how workers form expectations. The second approach is to

directly model workers’ expectations about fatality rates using weather data.24 The advantages

of this approach are that it relies upon easily observable information that workers may actually

use to form expectations, and it also allows expectations to depend on prospective beliefs about

intermediate-term weather patterns. For example, if El Niño weather patterns affect fatality

rates and are predictable far in advance, this approach may more accurately capture expectations

to the extent that they differ from retrospective average fatality rates.

4.4.1 Alternative Fatality Rate Measures

To test the sensitivity of the estimates to potential measurement error in the fatality rate, I re-

estimate each of the specifications from Table A6 using both the contemporaneous and lagged

fatality rates from the same calendar month in the prior year. Table A7 presents estimates from

these sensitivity analyses.

The results show that when a quartic polynomial in lagged fatality rates is included in the

model, the lagged terms are not statistically significant conditional on contemporaneous fatality

rates. Moreover, all of the contemporaneous fatality rate terms remain statistically significant,

and the magnitude of each coefficient is very similar to the baseline estimate.

Although the majority of the literature on compensating wage differentials uses contempora-

neous fatality rates (Viscusi and Aldy, 2003), the papers that assess sensitivity to measurement

of fatality rates use similar specifications with either lagged fatality rates or moving average

rates. Kniesner et al. (2012) argue that using single-year fatality rates is preferable in panel

settings because it better captures temporal variation. Although Table A7 shows that the esti-

mates are not very sensitive to this choice, I follow Kniesner et al. (2012) is using the single-year

estimates as the benchmark model.

23Dickstein and Morales (2013) call this type of error “expectational error,” and show that it creates attenuation
bias very similar to measurement error.

24Note that weather is not used as an instrumental variable. The observed fatality rate is not endogenous, nor
is weather excludable from the wage equation.
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4.4.2 A Weather-Based Model of Expected Fatality Rates

The second approach that I use to assess measurement error in expected fatality rates is to

model workers’ expectations using weather variables. Of course, the only weather conditions

that are relevant to workers’ decisions are those that are known at the time the labor supply

decision is made, which is almost always in advance of any precise weather forecasts.25

There are two main channels through which weather causes fatalities. The first is that large

waves either cause one or more deckhands to fall overboard or cause an entire vessel to capsize,

and the second is that, conditional on a fall overboard, the temperature of the water affects

the amount of time available for a potential rescue before hypothermia occurs.26 I use hourly

weather data from 1985 to 2011 obtained from an NOAA weather buoy located in the Bering

Sea to estimate a zero-inflate negative binomial model of the number of fatalities per month as a

function of average wave height, average water temperature, and the monthly variance of hourly

wave heights. Since water temperature has a direct mechanism for affecting fatality rates, while

air temperature is likely to be more salient for discomfort, I use water temperature to predict

fatality rates but air temperature in the wage equation. Additional details about this model,

including parameter estimates, are reported in Appendix Section 1.2. The full model has a

pseudo-R2 of 0.35, consistent with the evidence that much of the variation in safety is driven by

factors other than weather, such as policy variation.

To test if the weather-based predicted fatality rates affect the estimated coefficients, I re-

estimate the same baseline models from Table 3 including both the realized fatality rate and

the predicted fatality rate. The results, displayed in Table A8, suggest that using weather

to model expectations does not significantly affect the estimates. The coefficients on fatality

rate terms all remain very close to the baseline estimates, and all of the baseline coefficients

that were significant at the 0.05 level remain significant. Moreover, zero of the sixteen predicted

fatality rate terms is statistically significant. Most importantly, the key patterns in the estimates

suggesting declining MVSLs as a function of risk and the directions of the bias components, all

remain the same.

The two separate approaches to addressing potential concerns about measurement error

suggest that, although the fatality rates are measured in a small population with noise, this

variation does not appear to substantially alter either the qualitative patterns in the results

that underlie the key conclusions of the analysis, or the quantitative levels of the parameter

estimates.

25Deckhands typically arrive to help prepare a vessel about 2 weeks prior to departure, and the contract terms
are generally set in advance of arrival since transportation to the vessel is often expensive.

26See Lincoln and Conway (1999).
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4.5 Robustness Checks

4.5.1 Seasonal Variation in Productivity

A potential interpretation concern could arise if firms are differentially productive in different

seasons of the year. For example, suppose a vessel captain is more skilled at choosing fishing

locations for a particular species that can only be harvested in the summer. In this case the

compensation of workers on the vessel could be higher in the summer without being due to any

changes in the fatality rate. To test whether this potential concern affects results, I re-estimate

each of the main specifications from Table 3 including quarter effects and interactions between

the worker, vessel, and match effects with species effects. Estimates from these models allow

each worker, vessel, and job to have independent effects on wages across fishing trips for different

species and in different quarters of the year. These estimates eliminate differences in average

productivity during different seasons of the year and differences in the average productivity in

a particular job-match that differs across species being harvested.

Estimates from these models are presented in Table 6. Despite the quarter and species inte-

raction effects absorbing a large amount of the identifying variation, the qualitative conclusions

from these models are the same as those from the baseline estimates. The squared, cubic, or

quartic fatality rate term is significant in every specification, and the estimates still imply a

declining MVSL function. The directions of the bias components all remain the same, and the

worker effects estimates are still quite similar to the match effects estimates. These models

suggest that the results and conclusions from the analyses are robust to potential variation

in productivity across seasons of the year, and to workers, vessels, or jobs having differential

productivity when different types of species are harvested.

An additional advantage of these estimates, especially those in Column 3, which includes

vessel-by-species effects, is that they also control for much of the unobserved variation in uncer-

tainty about wages. To the extent that the variance in vessel revenue, which is a main source

of earnings uncertainty for workers, changes within a match as vessels catch different species,

the impact of this time-varying amenity on wages is absorbed by vessel-species effects. The

similarity of these estimates to the baseline results provides some reassurance that the main

findings are not driven by changes in uncertainty within matches across species.

4.5.2 Sensitivity of Estimates to Measurement of Non-Fatal Injury Severity

An empirical challenge associated with measuring occupational safety is that, unlike fatal in-

juries, non-fatal injuries vary in severity. Both the injury rate and the conditional severity of

injuries could potentially affect wages. In most settings there are not sufficient data to measure

variation in injury severities, so studies that control for non-fatal injuries tend to use average

injury rates. The Alaska Trauma Registry is a substantial improvement in data quality in this

regard, as it includes a variety of rich measures of injury severities. In addition to using the

injury microdata to construct monthly average non-fatal trauma rates, I construct three distinct

measures of injury severity. The first is a monthly average Injury Severity Score (ISS), which
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Table 6: Fixed Effects Models, Including Quarter and Species Effects

(1) (2) (3) (4)
Dependent Variable: ln(Wage)

Pooled with Worker-by- Vessel-by- Match-by-
Quarter and -Species and -Species and -Species and

Species Quarter Quarter Quarter
Effects Effects Effects Effects

Fatality Rate 0.270*** 0.100** 0.162*** 0.107**
[0.057] [0.046] [0.052] [0.048]

Fatality Rate Sq. –0.057*** –0.019* –0.035*** –0.021**
[0.012] [0.010] [0.011] [0.011]

Fatality Rate Cu. 0.004*** 0.001* 0.003*** 0.002*
[0.001] [0.001] [0.001] [0.001]

Fatality Rate 4th –0.000*** –0.000* –0.000*** –0.000*
[0.000] [0.000] [0.000] [0.000]

Non-Fatal Injury Rate –0.006 0.003 –0.001 0.002
[0.008] [0.005] [0.006] [0.005]

Injury Medical Costs 0.051 -0.003 0.042 0.007
[0.029] [0.024] [0.027] [0.024]

Mean Wave Height 0.039 0.117** 0.065 0.124**
[0.112] [0.054] [0.066] [0.050]

Variance of Wave Height 0.067 –0.039 0.019 –0.021
[0.052] [0.040] [0.051] [0.042]

Air Temperature 0.011 0.059*** 0.049 0.053***
[0.027] [0.020] [0.020] [0.020]

N 1,189 1,195 1,195 1,195
N Clusters 128 128 183 183
R-Sq 0.387 0.857 0.777 0.874

Notes: Fatality rate parameters are marginal effects of the fatality rate conditional on observing at least one
fatality, and are measured as the number of fatalities per 1,000 FTE worker-years. See notes to Table 3 for
definitions. Column 1 also includes education, race, and marital status. All models include quarter-of-year
effects, experience, and experience squared, and are weighted by the length of job spells. Species are grouped into
similar types as cod, salmon, crab, or other. Standard errors are clustered at the worker level in Models 1-2, and
at the match level in Models 3-4. *** Significant at the .01 level, ** significant at the 0.05 level, * significant at
the 0.10 level.

is based on a medically-established anatomical scoring system for grading trauma severity.27

Second, I measure the monthly average number of days of inpatient hospitalization associated

27The ISS is a modified measure of the Abbreviated Injury Score that takes into account the severity of multiple
simultaneous injuries to different regions of the body.
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with injuries in the relevant commercial fisheries. Third, I use data from injury medical records

on the costs of hospitalizations associated with each injury in the ATR, and construct a monthly

average medical cost measure.28

Table 7 presents estimates from match effects models that include each of the three measures

of injury severity. Since the Injury Severity Score, the number of days of hospitalization, and the

cost of hospitalization are highly correlated with each other, each model in the table includes the

average injury rate, along with one of these three measures. The results suggest that non-fatal

injury rates have no significant effect on earnings, and that the estimated coefficients on the

fatality rate terms are not very sensitive to how the severity of non-fatal injuries is measured.

4.5.3 Seasonal Variation of ‘The Marginal Worker’

According to hedonic theory, the equilibrium compensating wage differential is determined by

the preferences of the marginal worker in the relevant labor market. Given that there are more

deckhands employed in summer months, another potential concern for estimation is that the

marginal worker in the summer may have different preferences for fatal risk than the marginal

worker in the winter. Theoretically, one would expect the least risk averse individuals to work

in the winter, and the marginal worker in the summer to be more averse. If this were the case,

the compensating differential could increase in the summer. This would attenuate the average

VSL estimate, but potentially increase the rate of change of the MVSL with respect to risk

levels. The reason for this is because, as with all studies of compensating differentials in the

literature, estimates are based only on data from accepted job offers, which provide information

about upper bounds on preferences for safety.

Although the estimates from Table 6 suggest that results hold even when limiting identifi-

cation to variation within quarters and within worker-by-vessel-by species, I also test whether

estimates differ across subsamples of workers who worked during the winter, those who worked

during the summer, and those who worked in both the summer and the winter. Table 8 presents

these robustness estimates. Row 1 is the baseline match effects model. Row 2 estimates the

same model for the subset of workers who worked during the summer, and the estimates are

very similar to the overall estimates. Row 3 shows estimates for the subsample who worked

during the winter, and row 4 contains workers who worked in all seasons of the year. In each

case there is no statistically significant difference in any of the coefficients from the baseline

model, suggesting that there are not significant compositional changes in the types of workers

employed across seasons. This result makes sense intuitively given that workers are being drawn

from a very large geographic area, including most of the pacific northwest, so there may not be

a relative scarcity of people who are willing to accept risk.

Table 8 also presents several additional sensitivity analyses, including a specification that

removes the effect of weighting observations by the length of job spells, and estimates from a

28Hospital costs are based on up to three hospitalization spells per injury, and data on the source of payments
is available for up to two of those spells.
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Table 7: Sensitivity of Estimates to Measurement of Non-Fatal Injury Severity

(1) (2) (3)
Dependent Variable: ln(Wage)

Fatality Rate 0.143*** 0.148*** 0.153***
[0.048] [0.048] [0.050]

Fatality Rate Sq. -0.023** -0.025** -0.026**
[0.011] [0.011] [0.011]

Fatality Rate Cu. 0.002* 0.002** 0.002**
[0.001] [0.001] [0.001]

Fatality Rate 4th -0.000* -0.000** -0.000**
[0.000] [0.000] [0.000]

Non-Fatal Injury Rate 0.013 -0.001 -0.004
[0.008] [0.001] [0.006]

Injury Severity Score -0.004*
[0.002]

Injury Hospital Stays (Days) 0.001
[0.002]

Injury Medical Costs 0.040
[0.026]

Match Effects Y Y Y
N Obs. 1195 1195 1195
N Clusters 183 183 183
R2 0.792 0.791 0.791

Notes: All models are fixed effects specifications and include job match effects, year effects experience, and
experience squared, mean wave height, variance of wave height, and air temperature (as in Model 4 from Table 3)
and are weighted by the length of job spells. Fatality Rate terms are measured as the number of fatalities per
1,000 FTE worker-years. ‘Non-Fatal Injury Rate’ is measured as the number of traumatic injuries per 1,000 FTE
worker-years; the ‘Injury Severity Score’ is a medically-established anatomical scoring system for grading trauma
severity, including multiple simultaneous injuries, on a 1 to 75 scale, and is measured here as the expected sum of
ISS scores per 1,000 FTE worker-years; ‘Injury Hospital Stay (Days)’ is the average number of days of inpatient
hospitalization due to non-fatal injuries, per 1,000 FTE worker-years; ‘Injury Medical Costs’ is the average total
cost of hospital care for non-fatal injuries, measured in $100,000s based on reimbursement rates, per 1,000 FTE
worker-years. Standard errors are clustered at the match level. *** Significant at the .01 level, ** significant at
the 0.05 level, * significant at the 0.10 level.

random effects model. The estimates are qualitatively similar to the baseline estimates, although

each of the three specifications implies a more steeply declining MVSL function than the baseline

estimates. The random effects estimates are very similar to the fixed effects estimates, and satisfy

a Wu-Hausman test. Despite this, I use the more conservative fixed effects model throughout
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Table 8: Alternative Specifications and Subsamples

R R2 R3 R4 N

1. Baseline Specification
0.153*** -0.026** 0.002** -0.000**

1195
[0.050] [0.011] [0.001] [0.000]

2.
Subsample Work during
Summer

0.138** -0.024** 0.002* -0.000*
946

[0.053] [0.012] [0.001] [0.000]

3.
Subsample Work during
Winter

0.162*** -0.028** 0.002** -0.000**
1171

[0.050] [0.011] [0.001] [0.000]

4.
Subsample Work during
Summer and Winter

0.148*** -0.026** 0.002* -0.000*
926

[0.054] [0.012] [0.002] [0.000]

5. Not Weighted by Spell Length
0.320*** -0.053*** 0.003*** -0.000***

1195
[0.055] [0.012] [0.001] [0.000]

6.
Unweighted Random Match
Effects

0.350*** -0.059*** 0.004*** -0.000
1195

[0.050] [0.011] [0.001] [0.000]

Notes: Model 1 is the baseline match effects model from column (4) of Table 3. Model 2 includes only the
subsample of workers who worked at least one season between May and September. Model 3 includes only the
subsample of workers who worked at least one season between November and March. Model 4 includes only
the subsample of workers who worked at least one season between May and September and at least one season
between November and March. Model 5 does not weight observations by the length of job spells. Model 6 is an
unweighted random effects specification comparable to Model 6. All models include match effects, year effects,
experience, experience squared, non-fatal injury rate, injury medical costs, zero fatality rate indicator, mean wave
height, variance of wave height, and mean air temperature. Standard errors, in brackets, are clustered at the
match level. *** Significant at the .01 level, ** significant at the 0.05 level, * significant at the 0.10 level.

the analyses.

4.5.4 Survey-Based Measurement Error

Although there may be concerns about using recall-based survey data, there is a unique reason

to be optimistic about the recall data from this survey. Deckhands were very involved in the

design, implementation, and review of the major policy change through which the fisheries were

transitioned from open-access to rights-based in 2005. Workers were very aware of the effects

of the policy on the length of fishing seasons and on their earnings, and appeared easily able

to make comparisons between the years immediately before the policy change, 2003-2004, and

those immediately after.

In addition, Schnier, Horrace, and Felthoven (2010) also study the tradeoff between earnings

and risk in the Bering Sea crab fisheries, using administrative data. They analyze the decisions

of vessel captains to leave port as a function of contemporaneous weather conditions to infer

the VSL, which they estimate to be $4.0 to $4.8 million. Their estimates reflect a blend of the

captain’s own VSL and the captain’s altruistic value of deckhands’ lives. Whereas the aim of
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my paper is to use this unique empirical setting to guide improvements to the estimation of

hedonic wage models generally, Schnier, Horrace, and Felthoven (2010) circumvent the com-

plications of labor-market estimation and use weather variation to estimate a behavioral-based

VSL. However, since they use different data from administrative sources, their estimates provide

a useful benchmark for corroborating my survey data. When I replicate a model similar to the

specification that they use, the estimated MVSL using the survey data is about $4.13 million to

$5.04 million at comparable average risk levels, suggesting that my survey data are consistent

with administrative records.

5 Conclusions

Using panel survey data from the unique empirical setting of commercial fishing deckhands in the

Alaskan Bering Sea, I document several new facts related to how workers make decisions in the

presence of changing occupational safety hazards. The first set of findings relate to assessing and

improving methodologies that are frequently used to estimate the value of statistical life, which

factors into cost-benefit analyses of a wide array of pubic health and safety policies. The results

suggest that attempts to reduce omitted variable bias using within-worker variation caused by

job switches can lead to overcorrection, resulting in estimates that are below those from more

robust models. By decomposing the sources of potential bias, I find that the reason for this

overcorrection is due to the fact that latent worker heterogeneity is positively correlated with

fatality rates, while latent firm heterogeneity is negatively correlated with fatality rates. Despite

this, the worker-effects model offers a substantial estimation improvement that may be valuable

in situations where matched employee-employer data are not available. In the current setting, I

estimate that the worker effects model eliminates about 84% of the bias in VSL estimates from

the cross-sectional model relative to the benchmark match effects model.

The second set of findings take advantage of the large variations in risks of injury or death

over time for the same worker to assess how marginal aversion to physical hazards changes as risk

levels change. I document new information suggesting that the benefits of safety improvements

across multiple competing risks are complementary. This result has substantial implications

for understanding how the concentration of fatal risk affects the efficiency of regulatory policies

differently than aggregate levels of risk, a question that was introduced by Pratt and Zeckhauser

(1996). The theoretical ambiguity relates to two potential opposing effects, the ‘dead-anyway’

effect and the ‘high-payment’ effect. The former suggests that marginal aversion to fatal risk

should increase as the level or risk rises, while the latter suggests that as the level of risk increases

the total expenditure on risk reduction increases, increasing the marginal utility of wealth and

causing an ambiguous relationship between risk levels and willingness to pay for risk reductions.

Whereas Evans and Smith (2008) found that the dead-anyway effect dominates when studying

changes in the VSL following health shocks in HRS data, the estimates from this setting suggest

the opposite—that the ‘high-payment’ effect dominates the ‘dead-anyway’ effect in this empirical

setting. A dominant high-payment effect is also consistent with the illustrative example from
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Kahneman and Tversky (1979, which they attribute to Zeckhauser) that most people, if forced

to play Russian roulette, would pay more money to reduce the probability of death from 1/6 to

zero than they would pay to reduce it from 4/6 to 3/6.

Knowing whether preferences have this shape has considerable implications for public policy,

since it would suggest that the marginal benefit of reducing small baseline risks is higher per unit

of risk than the marginal benefit of a policy that focuses on safety improvements in high-risk

settings. In particular, the implication is that public safety policies are complementary with each

other, which implies that efficient policy design choices should be made at the portfolio level

to account for spillover benefits of safety improvements across public policies. One implication

of this pattern of preferences for healthcare policy, relative to the implicit assumption in the

literature that marginal preferences are independent of risk levels, is an increase in the value of

preventative care relative to ex post treatment of life-threatening conditions, for example.

Of course, there are many caveats to keep in mind regarding these results. The substantial

improvements to identification in the chosen empirical setting come at the cost of representing

only a very narrow subset of labor markets generally. For that reason, the quantitative estimates

of compensating differentials and their implied MVSLs are not intended to be used for evaluating

public safety policies. However, the results provide new insights on the nature of endogeneity

biases present under various methods used to estimate the value of statistical life, and suggest

new patterns about the marginal aversion to physical risk. My hope is that these findings can

help clarify the importance of several previously unidentified sources of estimation bias, so that

future research may address these challenges in more representative settings.
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1 Online Appendix

1.1 Additional Supporting Tables

Table A1: Summary Statistics: Work Experience

S.E.

Years F.T. Work Experience
Mean 19.39 [10.10]
10th Percentile 7
50th Percentile 20
90th Percentile 34

Years Fishing Experience
Mean 14.47 [9.37]
10th Percentile 3
50th Percentile 14
90th Percentile 27
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Table A2: Summary Statistics: Survey Demographics

Age 36.99

Race
White 85.71%
Black 1.50%
Non-White Hispanic 4.51%
Asian 3.76%
Other 4.51%

Education
Less than High School Diploma 9.02%
High School Diploma/Equivalent 47.37%
Some College 39.10%
College Degree or More 12.78%

Ever Married 47.37%
At Least One Child 47.37%
Has Health Insurance 46.21%
Has Life Insurance 34.85%

State of Residency
AK 15.91%
CA 5.30%
OR 7.58%
WA 50.76%
Other US 19.69%

N Respondents 133
N Worker-Vessel Pairs 183
N Job-Spells 1195

Table A3: Revenue-Sharing Contracts and Fishing Experience

Dependent Variable: Percentage of Vessel Net Revenue Earned by Worker

Shellfish Cod & Pollock Other Groundfish Salmon

Years Fishing Experience 0.26*** 0.34*** 0.17 0.60*** 0.98*** 0.03 0.20 0.54
[0.08] [0.09] [0.19] [0.11] [0.24] [0.09] [0.46] [1.20]

Years Fishing Experience Sq. ÷ 10 -0.13** -0.23*** 0.15 -0.43*** -0.72*** 0.05 0.03 -0.22
[0.06] [0.08] [0.17] [0.12] [0.16] [0.05] [0.30] [0.75]

Years Fishing Experience Cu. ÷ 100 0.02 0.04** -0.07* 0.08*** 0.13*** -0.01 0.00 0.09
[0.01] [0.02] [0.04] [0.03] [0.03] [0.01] [0.05] [0.14]

Constant 4.15 4.19 3.84 4.23 5.35 5.82 9.09 5.16

Match Effect Included N Y N Y N Y N Y

N Obs. 731 731 245 245 208 208 121 121
R2 0.05 0.76 0.15 0.95 0.13 0.99 0.19 0.40

* Significant at the .10 level, ** significant at the .05 level, *** significant at the .01 level
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Table A4: Correlations between Components of the Log Wage Rate

Correlation

Mean Std. Dev. Log Wage Xβ θ Ψ ε Aγ

Log Wage 3.43 0.67 1
Time-Varying Characteristics −0.09 0.11 −0.211 1
Worker Effect −0.31 0.69 0.497 −0.204 1
Firm Effect −0.35 0.59 0.215 −0.114 −0.595 1
Residual 0.00 0.31 0.457 0.000 −0.000 0.000 1
Non-Wage Job Amenities 0.71 0.25 0.335 −0.158 0.075 −0.101 0.000 1

Notes: Correlation parameters are between components from a decomposition of log wages into observable time-
varying characteristics (Xβ), unobservable worker heterogeneity (θ), unobservable firm heterogeneity (Ψ), and
non-wage job amenities (including a fourth order polynomial in the fatality rate, non-fatal trauma rate, injury
medical costs, mean wave height, variance of wave height, and air temperature) using a two-way fixed effects model.
The column headers use symbols from Equation 2 while row headers provide short descriptions. Correlations,
means, and standard deviations are all weighted by the length of job spells, as in the regression models.
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Figure A1: Average Two-Way Fixed Effects Residual by Sextile of Worker and Firm Effect

Notes: Plot depicts average residuals from an AKM two-way fixed effects model by sextile of the worker and firm
effects effects distributions.
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1.2 The Relationship between Weather and Fatality Rates

I estimate a count model of the number of fatalities per 1,000 FTE worker-years conditional on
weather variables. The empirical distribution of fatality rates is characterized by overdispersion
and excess zeros, so a zero-inflated negative binomial model provides a better fit than alternative
count models tested. The negative binomial model has density:

h[y|µ, α] =
Γ(α−1 + y)

Γ(α−1)Γ(y + 1)

(
α−1

α−1 + µ

)α−1 (
µ

µ+ α−1

)y
where E[y|µ, α] = µi = exp(x′tβ) and V [y|µ, α] = µ(1 + αµ).

The weather variables xt include average significant wave height,29 average water tempera-
ture, and the monthly variance of hourly wave height measurements.30 The variance term is
included to explain the frequency of extreme weather events within each month, during which
fatal accidents may be more likely.

The zero-inflation mixture model has density:

g(y) =

{
f(0) + (1− f(0))h(0) if y = 0

(1− f(0))h(y) if y ≥ 1.
(4)

where f(·) is a logit model with the same explanatory weather variables xt used in h(·).
Table A5 presents estimates of the effects of weather on the fatality rate. The first model

includes only the key weather variables. As expected, larger waves and more variation in wave
heights have significant positive effects on the fatality rate, while lower water temperature has
a slightly positive, though insignificant, effect. The second model, which is used as the main
model throughout the remaining analyses, includes a quadratic spline function of each of the
three weather conditions, with knots at the 25th, 50th, and 75th percentiles of the respective
distributions. This model provides a significant improvement in fit relative to the first model
(the p-value of the LR tests is less than 10−3). The full mixture model has a pseudo-R2 of 0.35,
suggesting that weather patterns provide useful information for predicting fatality rates. The
predicted fatality rates from this model are shown in Appendix Figures A3 and A4, along with
wave heights and temperatures.

29Average significant wave height is defined as the average wave height, from trough to crest, of the one-third
largest waves.

30Other weather variables were tested, but had negligible additional explanatory power and are very highly
correlated with the included weather variables.
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Table A5: First-Stage Estimate of Expected Fatality Rate
Zero-Adjusted Negative Binomial Models

(1) (2)
Dependent Variable: Fatalities per 1,000 FTE Worker-Years

Negative Binomial Parameters

Avg.WaveHeight 0.480 [0.188] -2.084 [3.620]
Avg.WaveHeight2 0.836 [1.146]
I(> P25) ∗ (Avg.WaveHeight− P25)2 -1.440 [1.831]
I(> P50) ∗ (Avg.WaveHeight− P50)2 1.039 [1.723]
I(> P75) ∗ (Avg.WaveHeight− P75)2 -2.918 [2.371]
V ar.WaveHeight 0.431 [0.167] 2.237 [1.700]
V ar.WaveHeight2 -1.752 [1.633]
I(> P25) ∗ (V ar.WaveHeight− P25)2 3.018 [2.381]
I(> P50) ∗ (V ar.WaveHeight− P50)2 -1.782 [1.315]
I(> P75) ∗ (V ar.WaveHeight− P75)2 0.173 [0.661]
Avg.Water Temp. -0.055 [0.037] -6.053 [2.275]
Avg.Water Temp.2 1.502 [0.549]
I(> P25) ∗ (Avg.Water Temp.− P25)2 -2.028 [0.755]
I(> P50) ∗ (Avg.Water Temp.− P50)2 0.553 [0.307]
I(> P75) ∗ (Avg.Water Temp.− P75)2 0.076 [0.150]
Constant 4.967 11.829

Logit Parameters

Avg.WaveHeight -0.073 [0.277] 12.077 [9.196]
Avg.WaveHeight2 -3.970 [2.845]
I(> P25) ∗ (Avg.WaveHeight− P25)2 6.972 [4.268]
I(> P50) ∗ (Avg.WaveHeight− P50)2 -7.273 [3.492]
I(> P75) ∗ (Avg.WaveHeight− P75)2 8.321 [3.904]
V ar.WaveHeight -0.065 [0.064] 6.612 [5.471]
V ar.WaveHeight2 -4.0450 [4.716]
I(> P25) ∗ (V ar.WaveHeight− P25)2 3.096 [6.333]
I(> P50) ∗ (V ar.WaveHeight− P50)2 2.569 [3.145]
I(> P75) ∗ (V ar.WaveHeight− P75)2 -3.330 [1.931]
Avg.Water Temp. 0.139 [0.241] -10.163 [5.228]
Avg.Water Temp.2 2.563 [5.228]
I(> P25) ∗ (Avg.Water Temp.− P25)2 -3.662 [1.546]
I(> P50) ∗ (Avg.Water Temp.− P50)2 1.322 [0.505]
I(> P75) ∗ (Avg.Water Temp.− P75)2 -0.282 [0.282]
Constant -0.996

N Obs. 180 180
Pseudo-R2 Conditional Model 0.484 0.831
Pseudo-R2 Full Mixture Model 0.166 0.352
Log Likelihood -617.85 -584.91

Notes: Wave height is the ‘significant wave height’, which is the average of the highest one-third of all of the
wave, measured in meters. Averages and variances are calculated based on hourly measurements within a month.
P25, P50, and P75 are the 25th, 50th, and 75th percentiles of the respective distributions of weather conditions.
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1.2.1 Alternative Model Specification Using Weather-Based Partition

An alternative potential specification is to partition the variation in weather into two compo-
nents, one that affects fatal risk and a residual component that is orthogonal to risk. Consider
the basic model:

wijt = xitβ + r̂t(Wt)γ1 +Wtγ2 + Φi,J(i,t) + εijt (1)

where the period t fatality rate, rt(Wt), is a function of weather conditions Wt, and Wt can
also affect the reservation wage of a worker directly by creating uncomfortable work conditions.
Although γ1 and γ2 are identified using OLS as long as they are not perfectly collinear, which
they are not, an alternative specification is to force any variation in weather that is correlated
with fatal risk to enter the model through γ1, while identifying γ2 using only residual variation
in weather.

To do this, define PW = W (W ′W )−1W ′ as the matrix that projects onto the space spanned
by the columns of W , and define NW = I − PW as the matrix that projects onto its null space.
Similarly, define Pr̂ and Nr̂. Since

r̂t(Wt) +Wt = PW r̂t +NW r̂t + Pr̂tWt +Nr̂tWt

Model (1) can be expressed as:

wijt = xitβ + (PW r̂t + Pr̂tWt +NW r̂t)γ̄1 +Nr̂tWtγ̄2 + θi + ΨJ(i,t) + Φi,J(i,t) + εijt (2)

where γ̄1 is now the coefficient on total fatality risk. That is, rather than using the first-stage
weather model to estimate the fatality rate for the second-stage, the actual ex post fatality rate
is included in the second stage, and the first-stage model is used to estimate the partition of
the variation in fatality rates into a component explained by weather conditions and a residual
component. Model (2) can be relaxed further by allowing the coefficient on PW r̂t to differ from
that on NW r̂t. Model (3) is the linear version of this specification.

wijt = xitβ + (PW r̂t + Pr̂tWt)γ̆1 +NW r̂tγ3 +Nr̂tWtγ̄2 + θi + ΨJ(i,t) + Φi,J(i,t) + εijt (3)

Estimates from this model are shown in Table A9, and estimates from a comparable cubic model
are shown in Table A10. The implied MVSLs and patterns of estimation bias are similar in these
specifications as in the main results, as shown in Figure A2.
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Table A6: Fixed Effects Models, Linear in Fatality Rate

(1) (2) (3) (4)
Dependent Variable: ln(Wage)

Fatality Rate 0.036*** 0.031*** 0.035*** 0.029***
[0.011] [0.008] [0.008] [0.007]

Non-Fatal Injury Rate –0.004 –0.003 –0.005 –0.003**
[0.008] [0.006] [0.007] [0.006]

Injury Medical Costs 0.037 0.026 0.049* 0.036
[0.031] [0.024] [0.028] [0.024]

Mean Wave Height 0.163 0.303*** 0.254*** 0.307***
[0.093] [0.061] [0.066] [0.074]

Variance of Wave Height 0.047 –0.011 0.054 0.012
[0.050] [0.041] [0.043] [0.040]

Air Temperature –0.016 0.001 0.008 0.011
[0.014] [0.010] [0.011] [0.011]

Worker Effects N Y N Y
Vessel Effects N N Y Y
Match Effects N N N Y

N Obs. 1,195 1,195 1,195 1,195
N Clusters 128 128 183 183
R-Sq 0.307 0.732 0.685 0.790

VSL ($ Millions) $2.22 $1.92 $2.15 $1.81
[0.68] [0.47] [0.50] [0.43]

Notes: Fatality rates are measured as the number of fatalities per 1,000 FTE worker-years. Variance of Wave
Height is the within-month variance of hourly wave height measurements. ‘Non-Fatal Injury Rate’ is measured as
the number of traumatic injuries per 1,000 FTE worker-years. ‘Injury Medical Costs’ is the average total cost of
hospital care for non-fatal injuries, measured in $100,000s based on reimbursement rates, per 1,000 FTE worker-
years. Model 1 also includes education, race, and marital status. All models include year effects, experience,
experience squared, and a zero fatalities indicator, and are weighted by the length of job spells. Standard errors
are clustered at the worker level in Models 1-2, and at the match level in Models 3-4. VSL estimates are measured
in millions of 2009 dollars, with standard errors calculated using the delta method. *** Significant at the .01
level, ** significant at the 0.05 level, * significant at the 0.10 level
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Table A7: Sensitivity to Measurement of Fatality Rates

(1) (2) (3) (4)
Dependent Variable: ln(Wage)

Fatality Rate 0.338*** 0.136** 0.211*** 0.154***
[0.078] [0.057] [0.055] [0.053]

Fatality Rate Sq. -0.069*** -0.025* -0.042*** -0.028**
[0.016] [0.013] [0.012] [0.012]

Fatality Rate Cu. 0.005*** 0.002** 0.003*** 0.002**
[0.001] [0.001] [0.001] [0.001]

Fatality Rate 4th -0.000*** -0.000** -0.000*** -0.000**
[0.000] [0.000] [0.000] [0.000]

Lagged Fatality Rate 0.040 0.044 -0.039 -0.038
[0.065] [0.046] [0.042] [0.043]

Lagged Fatality Rate Sq. -0.007 0.009 0.005 0.006
[0.016] [0.012] [0.011] [0.011]

Lagged Fatality Rate Cu. 0.001 -0.000 0.001 0.000
[0.001] [0.001] [0.003] [0.001]

Lagged Fatality Rate 4th -0.000 0.000 -0.000 -0.000
[0.000] [0.000] [0.000] [0.000]

Worker Effects N Y N Y
Firm Effects N N Y Y
Match Effects N N N Y

N Obs. 1195 1195 1195 1195
N Clusters 128 128 183 183
R2 0.340 0.748 0.708 0.802

Notes: Fatality rates are measured as the number of fatalities per 1,000 FTE worker-years. Lagged fatality rate
refers to the fatality rate in the same calendar month of the prior year. Model 1 also includes education, race,
and marital status. All models include year effects, experience, experience squared, non-fatal injury rate, injury
medical costs, zero fatalities indicators, mean wave height, variance of wave height, and air temperature, and are
weighted by the length of job spells. Standard errors of coefficients, in brackets, are clustered at the worker level
in Models 1-2, and at the match level in Models 3-4. *** Significant at the .01 level, ** significant at the 0.05
level, * significant at the 0.10 level.
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Table A8: Fixed Effects Models, Predicted Fatality Rate

(1) (2) (3) (4)
Dependent Variable: ln(Wage)

Fatality Rate 0.266*** 0.116** 0.205*** 0.140***
[0.073] [0.055] [0.054] [0.050]

Fatality Rate Sq. -0.051*** -0.019 -0.039*** -0.024**
[0.015] [0.012] [0.011] [0.011]

Fatality Rate Cu. 0.004*** 0.001 0.003*** 0.002**
[0.001] [0.001] [0.001] [0.001]

Fatality Rate 4th -0.000*** -0.000 -0.000*** -0.000**
[0.000] [0.000] [0.000] [0.000]

Predicted Fatality Rate 0.237 -0.002 -0.021 0.097
[0.158] [0.131] [0.155] [0.120]

Predicted Fatality Rate Sq. -0.036 0.010 0.007 -0.018
[0.039] [0.031] [0.037] [0.029]

Predicted Fatality Rate Cu. 0.002 -0.002 -0.001 0.001
[0.004] [0.003] [0.003] [0.003]

Predicted Fatality Rate 4th -0.000 0.000 0.000 -0.000
[0.000] [0.000] [0.000] [0.000]

Worker Effects N Y N Y
Firm Effects N N Y Y
Match Effects N N N Y

N Obs. 1195 1195 1195 1195
N Clusters 128 128 183 183
R2 0.329 0.735 0.693 0.794

Notes: ‘Predicted Fatality Rate’ terms are predicted fatality rates from Model 2 in Table A5, and are measured
as the number of fatalities per 1,000 FTE worker-years. Model 1 also includes education, race, and marital status.
All models include year effects, experience, experience squared, non-fatal injury rate, injury medical costs, a zero
fatalities indicator, mean wave height, variance of wave height, and air temperature, and are weighted by the
length of job spells. Standard errors of coefficients, in brackets, are clustered at the worker level in Models 1-2,
and at the match level in Models 3-4. *** Significant at the .01 level, ** significant at the 0.05 level, * significant
at the 0.10 level.
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Table A9: Linear Fixed Effects Models

(1) (2) (3) (4)
Dependent Variable: ln(Wage)

Fatality Rate 0.059 0.063 0.064 0.060
S.E. (Clustered) [0.011] *** [0.009] *** [0.012] *** [0.011] ***
S.E. (with M-T Adj.) [0.031] ** [0.029] ** [0.028] ** [0.029] **

Avg. Wave Height Residual 0.301 0.421 0.445 0.438
S.E. (Clustered) [0.088] *** [0.075] *** [0.096] *** [0.086] ***
S.E. (with M-T Adj.) [0.190] [0.178] ** [0.175] ** [0.178] **

Var. Wave Height Residual 0.053 -0.012 0.074 0.036
S.E. (Clustered) [0.055] [0.046] [0.050] [0.045]
S.E. (with M-T Adj.) [0.205] [0.196] [0.180] [0.189]

Avg. Water Temp. Residual 0.000 0.023 0.039 0.036
S.E. (Clustered) [0.020] [0.017] [0.018] ** [0.018] **
S.E. (with M-T Adj.) [0.036] [0.033] [0.031] [0.032]

Fatality Rate Residual 0.001 0.004 -0.000 0.005
S.E. (Clustered) [0.007] [0.005] [0.005] [0.005]
S.E. (with M-T Adj.) [0.011] [0.009] [0.009] [0.009]

Worker Effects N Y N Y
Firm Effects N N Y Y
Match Effects N N N Y

N Obs. 1195 1195 1195 1195
N Clusters 128 128 183 183
R2 0.275 0.719 0.660 0.781

Notes: *** Significant at the .01 level, ** significant at the .05 level. Column 1 includes experience, experience
squared, education, race, and marital status. All models are weighted by the length of job spells. All
models include year effects. ‘Fatality Rate’ measured as the number of fatalities per 1,000 FTE worker-years.
Weather-related variables are the residuals from regressing the respective weather conditions on the polynomial
in predicted fatality rates. ‘Fatality Rate Residual’ is the residual from regressing the observed actual fatality
rate on the fatality rate predicted by weather conditions. First standard errors are clustered at the worker level
in Columns 1 and 2 and at the worker-firm level in Columns 3 and 4. Second standard errors are clustered and
adjusted for generated regressors using Murphy-Topel (1985).
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Table A10: Nonlinear Fixed Effects Models

(5) (6) (7) (8)
Dependent Variable: ln(Wage)

Fatality Rate 0.342 0.253 0.286 0.283
S.E. (Clustered) [0.054] *** [0.050] *** [0.048] *** [0.041] ***
S.E. (with M-T Adj.) [0.117] *** [0.062] *** [0.069] *** [0.065] ***

Fatality Rate Sq. -0.042 -0.025 -0.031 -0.030
S.E. (Clustered) [0.009] *** [0.007] *** [0.007] *** [0.005] ***
S.E. (with M-T Adj.) [0.026] [0.011] ** [0.013] ** [0.012] **

Fatality Rate Cu. 0.002 0.001 0.001 0.001
S.E. (Clustered) [0.000] *** [0.000] *** [0.000] *** [0.000] ***
S.E. (with M-T Adj.) [0.002] [0.001] [0.001] [0.001]

Avg. Wave Height Residual 0.257 0.411 0.450 0.421
S.E. (Clustered) [0.092] *** [0.077] *** [0.098] *** [0.082] ***
S.E. (with M-T Adj.) [0.104] ** [0.078] *** [0.103] *** [0.086] ***

Var. Wave Height Residual -0.025 -0.039 0.042 0.003
S.E. (Clustered) [0.059] [0.049] [0.050] [0.050]
S.E. (with M-T Adj.) [0.070] [0.053] [0.069] [0.067]

Avg. Water Temp. Residual 0.001 0.023 0.038 0.037
S.E. (Clustered) [0.021] [0.017] [0.019] ** [0.019] **
S.E. (with M-T Adj.) [0.022] [0.017] [0.020] [0.019]

Fatality Rate Residual 0.003 0.005 0.001 0.006
S.E. (Clustered) [0.008] [0.006] [0.006] [0.006]
S.E. (with M-T Adj.) [0.008] [0.006] [0.006] [0.006]

Worker Effects N Y N Y
Firm Effects N N Y Y
Match Effects N N N Y

N Obs. 1195 1195 1195 1195
N Clusters 128 128 183 183
R2 0.279 0.720 0.660 0.782
p-value of F-test for

0.098 0.022 0.016 0.013
Nonlinearity (M-T Adj.)

Notes: *** Significant at the .01 level, ** significant at the .05 level. Column 5 includes experience, experience
squared, education, race, and marital status. All models are weighted by the length of job spells. All
models include year effects. ‘Fatality Rate’ measured as the number of fatalities per 1,000 FTE worker-years.
Weather-related variables are the residuals from regressing the respective weather conditions on the polynomial
in predicted fatality rates. ‘Fatality Rate Residual’ is the residual from regressing the observed actual fatality
rate on the fatality rate predicted by weather conditions. First standard errors are clustered at the worker level
in Columns 5 and 6 and at the worker-firm level in Columns 7 and 8. Second standard errors are clustered and
adjusted for generated regressors using Murphy-Topel (1985).
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Figure A2: Marginal VSL vs. Fatality Rate Implied by Estimates from Table A10

$2

$4

$6

$8

$10

$12

1 2 3 4 5

M
ar

gi
na

l V
SL

 (M
ill

io
ns

) 

Fatalities per 1,000 FTE Worker-Years 

Model 5
Model 6
Model 7
Model 8

13



Figure A3: Fatality Rate vs. Wave Height

Notes: Calculations are based on from AOISS Fatality Data, NIOSH FTE Workers Data, and NOAA Weather
Data. Fatality rates are measured in deaths per 100,000 full-time equivalent worker-years.

Figure A4: Fatality Rate vs. Water and Air Temperature

Notes: Calculations are based on from AOISS Fatality Data, NIOSH FTE Workers Data, and NOAA Weather
Data. Fatality rates are measured in deaths per 100,000 full-time equivalent worker-years.
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Table A11: Main Estimates, Sample with At Least X Years Experience

(1) (2) (3) (4)
Dependent Variable: ln(Wage)

At Least 5 Years Experience

Fatality Rate 0.307*** 0.142** 0.200*** 0.163***
[0.075] [0.057] [0.053] [0.052]

Fatality Rate Sq. –0.060*** –0.024* –0.037*** –0.027**
[0.015] [0.012] [0.012] [0.011]

Fatality Rate Cu. 0.004*** 0.002* 0.003*** 0.002**
[0.001] [0.001] [0.001] [0.001]

Fatality Rate 4th –0.000*** –0.000* –0.000** –0.000**
[0.000] [0.000] [0.000] [0.000]

At Least 10 Years Experience

Fatality Rate 0.343*** 0.153** 0.214*** 0.175***
[0.083] [0.065] [0.060] [0.058]

Fatality Rate Sq. –0.069*** –0.028** –0.041*** –0.032**
[0.017] [0.014] [0.013] [0.013]

Fatality Rate Cu. 0.005*** 0.002* 0.003*** 0.002**
[0.001] [0.001] [0.001] [0.001]

Fatality Rate 4th –0.000*** –0.000* –0.000** –0.000**
[0.000] [0.000] [0.000] [0.000]

Worker Effects N Y N Y
Vessel Effects N N Y Y
Match Effects N N N Y

Notes: All specifications are identical to those in Table 3.

1.3 Alternative Standard Error Estimates

The following table presents alternative estimates of the standard errors for the main reduced-

form models. The first two alternative estimates cluster standard errors at the worker and

firm levels, respectively. There are 128 worker clusters and 123 firm clusters. The final three

estimates cluster by time, the first by month-year pairs, the second by month, and third by

year. Since job spells frequently last several months, each ‘month’ cluster is a unique combi-

nation of months observed in the data, of which there are 62. There are 283 month-year clusters.
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Table A12: Alternative Standard Error Estimates

(1) (2) (3) (4)
Dependent Variable: ln(Wage)

Fatality Rate 0.3131 0.1336 0.2161 0.1532
S.E. (Clustered: Worker) [0.0694]*** [0.0533]** [0.0519]*** [0.0490]***
S.E. (Clustered: Firm) [0.0683]*** [0.0492]*** [0.0526]*** [0.0496]***
S.E. (Clustered: Month-Year) [0.1022]*** [0.0680]** [0.0831]*** [0.0594]***
S.E. (Clustered: Month) [0.0989]*** [0.0585]** [0.0778]*** [0.0561]***

Fatality Rate Sq. -0.0620 -0.0228 -0.0411 -0.0263
S.E. (Clustered: Worker) [0.0143]*** [0.0118]* [0.0111]*** [0.0106]**
S.E. (Clustered: Firm) [0.0141]*** [0.0109]** [0.0114]*** [0.0108]**
S.E. (Clustered: Month-Year) [0.0224]*** [0.0154] [0.0188]** [0.0138]*
S.E. (Clustered: Month) [0.0235]** [0.0147] [0.0196]** [0.0141]*

Fatality Rate Cu. 0.0047 0.0017 0.0031 0.0019
S.E. (Clustered: Worker) [0.0010]*** [0.0009]* [0.0009]*** [0.0008]**
S.E. (Clustered: Firm) [0.0010]*** [0.0008]** [0.0009]*** [0.0008]**
S.E. (Clustered: Month-Year) [0.0017]*** [0.0012] [0.0014]** [0.0011]*
S.E. (Clustered: Month) [0.0018]** [0.0012] [0.0016]* [0.0011]

Fatality Rate 4th -0.0001 -0.0000 -0.0001 -0.0000
S.E. (Clustered: Worker) [0.0000]*** [0.0000]* [0.0000]*** [0.0000]**
S.E. (Clustered: Firm) [0.0000]*** [0.0000]* [0.0000]*** [0.0000]**
S.E. (Clustered: Month-Year) [0.0000]*** [0.0000] [0.0000]** [0.0000]*
S.E. (Clustered: Month) [0.0000]** [0.0000] [0.0000]* [0.0000]

F-Statistic p-values of Fatality Rate Terms
S.E. Clustered: Worker 0.0000 0.0014 0.0000 0.0005
S.E. Clustered: Firm 0.0000 0.0006 0.0001 0.0005
S.E. Clustered: Month-Year 0.0000 0.0035 0.0000 0.0003
S.E. Clustered: Month 0.0002 0.0008 0.0000 0.0003

Worker Effects N Y N Y
Firm Effects N N Y Y
Worker-Firm Effects N N N Y
N Obs. 1195 1195 1195 1195
R2 0.318 0.733 0.690 0.791

Fatality rate parameters are marginal effects of the fatality rate conditional on observing at least one fatality,
and are measured as the number of fatalities per 1,000 FTE worker-years. All models also include the mean wave
height, variance of wave height, mean air temperature, non-fatal injury rate, injury medical costs, year effects,
experience, and experience squared. Pooled estimates in column 1 also include education, race, and marital status.
All models are weighted by the length of job spells. *** Significant at the .01 level, ** significant at the 0.05 level,
* significant at the 0.10 level.

1.4 Survey Response Rates

As described in the paper, the main source of labor-market data come from a survey of deck-

hands working in Bering Sea fisheries, which was conducted in several rounds, including mailing

components and a field survey conducted in Dutch Harbor. The survey data include 133 respon-

dents who worked a total of N=1,351 fishing job spells. Of these respondents, 80 were in the

direct survey group completed in October 2009, at the beginning of the Red King Crab season,

and the response rate for this survey was 62.2%. The remaining 53 respondents were from two

separate rounds of mailing interviews, which had average response rates of 4.2% and 16%.

The low response rates from the mailing portion of the survey raise two important questions.
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First, to what extent might the low response rates affect estimates? Second, does it matter if

the estimates are affected by response rates?

With respect to the first question, several referees have suggesting include a control variable

for the round in which the survey was completed. Since the main specifications are fixed effects

models, in both the within worker and within match models the survey round indicator is

perfectly collinear with the person effect or match effect, so this is not possible. In this sense,

the person effects and match effects control for any variation in sample composition between the

different rounds of the survey. If we were interested in estimating the values of the person and

match effects, this could potentially be concerning. However, since person and match effects

are essentially nuisance parameters in the model, the fact that they also control for potential

differences in survey rounds is not problematic.

In the cross sectional model it is of course possible to assess whether the low response rate

introduces bias into the models. Appendix Table A13 presents estimates of the cross-sectional

model with controls for survey format. The first comparison includes a dummy variable for

in-person surveys and an interaction between the in-person survey indicator and the fatality

rate. The results suggest that there is no statistically significant difference in log wages between

the respondents to the mail-based and in-person surveys, and there is no significant difference in

the estimated compensating wage differential. With such a limited sample there is not enough

power to compare estimates between two different quartic functions, so the full set of interaction

terms in the nonlinear model is not informative. Columns 3 and 4 of the table show, however,

that including a control variable for the survey format has no meaningful or significant effect on

the estimated compensating wage differentials, and there is no significant difference in average

log wages between the two groups of respondents.

A second related question is: does the response rate matter? In most settings response rates

can be very important for assessing the representativeness of a sample. In the current study, the

sample is already highly selected from one specific geographic location and industry. That is,

the entire population of interest is already not representative for any policy-relevant questions

that are discussed in the paper. Even a representative sample of a non-representative population

would still not be representative. The more important question seems to me to be: “what can we

learn from this specific case study that can help improve our understanding of a classic problem

in labor economics, the estimation of compensating wage differentials?”, rather than “are the

estimates produced representative of parameters for one specific fishery in Alaska?”
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Table A13: Effects of Survey Format on Estimates

(1) (2) (3) (4)
Dependent Variable: ln(Wage)

Fatality Rate 0.036*** 0.039** 0.313*** 0.314***
[0.011] [0.020] [0.069] [0.069]

In-Person Survey 0.021 0.014
[0.108] [0.097]

In-Person Survey*Fatality Rate –0.005
[0.016]

Fatality Rate Sq. –0.062*** –0.062***
[0.014] [0.014]

Fatality Rate Cu. 0.005*** 0.005***
[0.001] [0.001]

Fatality Rate 4th –0.000*** –0.000*
[0.000] [0.000]

N 1,195 1,195 1,195 1,195
N Clusters 128 128 128 128
R-Sq 0.307 0.307 0.318 0.318

Notes: Models are identical to column 1 of Table 3, except that the second column includes an indicator for
respondents who were surveyed in-person. *** Significant at the .01 level, ** significant at the 0.05 level, *
significant at the 0.10 level.
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