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Overview

� Gender skills gaps have largely closed in recent decades, but wage gaps and workplace
segregation have remained

� Wage gaps and segregation pervasive at every level—occupations, industries, and

establishments [Bayard et al. (2003); Card et al. (2016); Cortes and Pan (2017); Goldin et al. (2017)]

� Question: why have gender differences in labor market sorting not converged along

with skills gap?

� We study whether risk, and gender differences in risk preferences, contribute to gender

gap in labor market sorting
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Motivation

Figure 1: Job-to-Job Transition Gradient Field: Physical Risk
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Overview

What can explain the gender divergence in job sorting patterns?

1. Spurious pattern driven by many correlated job characteristics for which men and

women have different preferences

� Large literature in psychology and economics show women are more financially risk averse

[Bertrand (2011)]

� Experimental evidence suggests preferences predictive of actual differences in job sorting

[Wiswall and Zafar (2003)]

� Small literature on physical risk preferences: DeLeire and Levy (2004) find gender

gap in preferences for physical risk explains about 1/4 of occupational segregation

� Compare job sorting on the basis of physical vs financial risk—do we see similar

patterns?
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Motivation

Figure 2: Job-to-Job Transition Gradient Field: Financial Risk
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Why do women and men sort so differently on safety?

2. Large literatures showing women are compensated less per unit of risk, and that
women have stronger preferences for safety [Hersch (1998); Viscusi and Aldy (2003); DeLeire and

Levy (2004); Blau and Kahn (2016)]

� If these are both true, sorting patterns may be utility maximizing given prices

� Difficult to reconcile:

� Wrong-sided: hedonic wage theory suggests compensating differentials determined by
preferences of marginal worker [Rosen 1974]

� Substitutability: if male and female labor is substitutable, then men and women share the same

marginal worker

� We replicate gender gap in compensating wage differentials, and show that it is explained

by measurement error and limitations in modeling non-random job assignment
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Why do women and men sort so differently on safety?

3. Within-establishment gender differences in average rents paid to men and women

� Card, Cardoso, and Kline (2016) show women earn only 90% of the establishment wage

premium earned by men

� If establishment sorting is a primary channel of within-worker wage growth, this may

dampen relative incentives of women to sort on pay versus amenities

� In Brazil, within-establishment gender difference in rents explains only 0.7 pp of gender

gap

� Holding fixed establishment assignment, if women were paid male rents their wages would

actually decrease by 1.6 pp
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Why do women and men sort so differently on safety?

3. Can these patterns by explained by gender differences in assignment to
establishments?

� Could occur due to differences in job consideration sets or discriminatory establishments

� Potentially—we show that there is substantial segregation of men and women across

occupations and establishments

� Gender segregation is strongly correlated with occupational safety

� Establishment segregation compounds differences in earnings growth from job mobility
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Implications of Sorting Patterns

� Direct effect of compensating wage differential on gender wage gap is small: 1 pp

� However, sorting on safety leads to gender segregation across establishments

� Women disproportionately end up in establishments that pay all workers low rents

� Women over-represented in firms that pay higher rents to women than men

� Men over-represented in firms that pay higher rents to men than women

� Within-firm gender gap in rents is dominated by across-firm difference in average rents

� This establishment sorting, which is strongly correlated with safety, can explain 1/3 of

the entire (unconditional) gender wage gap in Brazil
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Data and empirical setting



Empirical Setting

� Longitudinal matched employer-employee data from Brazil: 2003-2010

� Covers all formal-sector jobs (50 million per year, 430 million job-years)

� Purpose of the data is to administer the Abono Salarial, a constitutionally-mandated

annual bonus equal to one month’s earnings

� Job characteristics: earnings, contracted hours, occupation, date of hire, date of

separation, cause of separation (including death on the job)

� Worker characteristics: age, education, race, gender

� Establishment characteristics: industry, number of workers, location
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Fatality Rates

� We calculate fatality rates using the cause of separation data

� Preferred measure is three-year moving average fatality rate by gender by 2-digit
industry by 3-digit occupation cell

� 22,880 gender industry-occupation cells compared to 720 in BLS data

� Scale measure to equal deaths per 100,000 full-time equivalent job-years

� Gender-Ind-Occ measure is dramatically different than previous measures (Gender-Ind,
Gender-Occ)

� 91% of variation is within industry; 89% of variation is within occupation

� Very different Ind-Occ interaction effects than for men

� Women 38% safer than men within Ind-Occ cells
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Analysis Sample

� Workers ages 23-65

� Full-time (30 hrs) dominant job in each calendar year

� Exclude singleton firms, government and temporary jobs

� Exclude industry-occupation cells with fewer than 10,000 full-time full-year equivalent

workers

� Winsorize wage distribution at 1st and 99th percentiles
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Summary statistics and stylized

facts



Summary Statistics

Full Attached

Population Dominant Jobs

Women Men Women Men

Age 35.83 35.46 38.36 38.64

Race White 0.57 0.56 0.69 0.64

Less than High School 0.32 0.53 0.38 0.58

High School 0.41 0.33 0.40 0.33

Some College 0.05 0.03 0.06 0.03

College or More 0.21 0.10 0.16 0.07

Contracted Weekly Hours 39.46 42.03 42.05 43.04

Log Hourly Wage 1.33 1.42 1.44 1.61

Total Experience (Years) 18.35 18.98 22.12 23.43

Job Tenure (Months) 62.36 51.69 89.56 82.93

Pooled Fatality Rate (per 100,000) 0.02 0.07 0.02 0.08

Gender-Specific Fatality Rate 0.01 0.08 0.01 0.08

Zero Fatality Rate 0.26 0.15 0.35 0.12

N 134,361,238 194,907,785 11,419,266 22,234,188 12



Women Are Disproportionately Represented in Safer Jobs

Figure 3: Share of Female Workers by Log Fatality Rate

� Doubling fatality rate

associated with 15%

reduction in female

employment share
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This is Also True Within Establishments

Figure 4: Share of Female Workers by Log Fatality Rate

� Within establishments,

female employment

share is higher in safer

occupations
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Women Are Safer than Men Within Similar Jobs

Figure 5: Female vs Male Fatality Rates by Industry-Occupation
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Can sorting patterns be explained

by compensating wage differentials?



Descriptive Baseline Estimates

� We begin by evaluating gender differences in compensating wage differentials for

safety:

lnwit = xitβ + γgac(i ,t),t + θi + ε it

� X includes a cubic in experience interacted with race, establishment size effects,

tenure, state effects, year effects, 1-digit industry effects, and 1-digit occupation effects

� ac(i ,t),t is the gender-specific fatality rate in ind-occ cell c in which worker i is

employed in year t

� γg is gender-specific coefficient

� θi fixed worker effect
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Estimates

Table 1: Compensating Wage Differentials for Full-Time Prime-Age Men

Dependent Variable: ln(Wage)

Pooled
Worker

Effects

Fatality Rate 0.284 0.122

(0.013) (0.005)

Fatality Rate*Male 0.111 0.010

(0.013) (0.005)

N 22,241,909 22,241,909

R2 0.462 0.955
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Residual Diagnostics

Figure 6: Worker Effects Model: Average Job-to-Job ∆εit by ∆Rc(i ,t)
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Motivating model selection:

Graphical overview
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Graphical Overview: Rosen Pricing Function
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The ability bias puzzle
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Graphical Overview: Ability Bias
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Ability Bias

lnwit = xitβ + γgac(i ,t),t + θi + ε it

� Latent θi likely negatively correlated with fatality rate a

� Potential solution—estimate within-worker model using panel data [Brown (1980); Garen

(1988); Kniesner et al 2012]

� Puzzle:

� Within-worker estimates indicate γ̂Cross-Sectional >> γ̂Panel
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The role of firms in explaining

the ability bias puzzle
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Job Mobility and Wages:

� Explanation: worker effects model cannot adequately capture within-worker wage

process, largely driven by job mobility

� Why do workers move?

1. Search frictions affect wage/amenity bundles

[Hwang, Mortensen, Reed (1998); Lang and Majumdar (2004)]

2. Workers get good/bad news about ability

[Gibbons and Katz (1992)]

3. Workers get good/bad news about match quality

[Abowd, McKinney, Schmutte (2015)]

4. Preference changes, potentially correlated with family structure

[DeLeire and Levy (2004); Hotz et al. (WP)]
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AKM and the Components of Earnings Structures

lnwijt = Xijtβ + θi + ψJ(i ,t) + ε ijt

� Separate literature has studied the components of earnings

[Abowd et al. (AKM 1999); Woodcock (2004); Card et al. (2013)]

� Across many countries worldwide, surprisingly similar wage patterns:

� ≈ 40% of earnings variance explained by θi
� ≈ 20-25% of earnings variance explained by ψJ(i ,t)

� Firm earnings effects ψJ(i ,t) potentially consistent with search frictions, imperfect

competition, efficiency wages, or unobserved firm-level amenities

� Evidence that ψJ(i ,t), and therefore job mobility based on ψJ(i ,t), differs by gender
[Card et al. (2016)]
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Explaining the Ability Bias Puzzle
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Wage Decomposition Model

� We estimate a two-step variant of AKM model

wit = xitβg + γ̃gac(i ,t),t + Φi ,M(i ,t) + εit

wit − xit β̂g = πg zit + γgac(i ,t),t + θi + ψg
J(i ,t)

+ εit

� Φi ,M(i ,t) worker-establishment-occupation match effects

� ψg
J(i ,t)

gender-specific establishment effects

� Identifies gender-specific CWDs (γf , γm) using across-job variation

� Allows job mobility choices to be correlated with unobserved worker and

gender-specific establishment characteristics
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Wage Decomposition Model

wit = xitβg + γ̃gac(i ,t),t + Φi ,M(i ,t) + εit

wit − xit β̂g = πg zit + γgac(i ,t),t + θi + ψg
J(i ,t)

+ εit

� Why not use ̂̃γg?

� Only 3% of variation in fatality rates occurs within jobs, very small changes may not be

salient, and wages may not adjust quickly

� Objective is to use across-job variation in R, while correcting for potential endogeneity

associated with job changes
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Identification of ψg
J(i ,t)

wit = xitβg + γ̃gac(i ,t),t + Φi ,M(i ,t) + εit

wit − xit β̂g = πg zit + γgac(i ,t),t + θi + ψg
J(i ,t)

+ εit

� Normalization required to interpret ψg
J(i ,t)

� Each disconnected subset has mean zero ψJ(i ,t), cannot compare levels without common

reference point

� (Almost) never observe the same worker transitioning for receiving male ψm
J(i ,t) to

receiving female ψf
J(i ,t)

� Normalization: assume that in lowest paying industries there are no rents paid to men or
women [Card et al. (2016)]

� Normalized ψg
J(i ,t)

only identified in the intersection of the connected job mobility

networks of male and female workers
27



Summary Statistics

Full Attached Dual

Population Dominant Jobs Connected Set

Women Men Women Men Women Men

Age 35.83 35.46 38.36 38.64 38.20 38.37

Race White 0.57 0.56 0.69 0.64 0.68 0.63

Less than High School 0.32 0.53 0.38 0.58 0.36 0.52

High School 0.41 0.33 0.40 0.33 0.39 0.36

Some College 0.05 0.03 0.06 0.03 0.06 0.04

College or More 0.21 0.10 0.16 0.07 0.18 0.09

Contracted Weekly Hours 39.46 42.03 42.05 43.04 41.63 42.79

Log Hourly Wage 1.33 1.42 1.44 1.61 1.54 1.72

Total Experience (Years) 18.35 18.98 22.12 23.43 21.80 22.89

Job Tenure (Months) 62.36 51.69 89.56 82.93 90.91 84.66

Pooled Fatality Rate (per 100,000) 0.02 0.07 0.02 0.08 0.02 0.07

Gender-Specific Fatality Rate 0.01 0.08 0.01 0.08 0.01 0.08

Zero Fatality Rate 0.26 0.15 0.35 0.12 0.37 0.13

N 134,361,238 194,907,785 11,419,266 22,234,188 8,193,244 14,567,312
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Can Differences in CWDs Explain Sorting Patterns?

Fatality Rate Fatality Rate

Industry*Occupation Gender*Industry*Occupation

(1) (2) (3) (4) (5)

Men Women Men Women Both

Fatality Rate 0.233* 0.161* 0.174* 0.174* 0.174*

(0.002) (0.005) (0.002) (0.005) (0.002)

Fatality Rate*Female 0.001

(0.005)

VSL (million reais) 3.41 2.06 2.55 2.23 2.43

[3.34, 3.47] [1.94, 2.18] [2.49, 2.60] [2.11, 2.35] [2.33, 2.54]

N 13,985,793 8,131,646 13,985,793 8,131,646 22,117,439

R-Sq 0.959 0.970 0.959 0.970 0.971
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Can Differences in CWDs Explain Sorting Patterns?

� Summary:

� Previous evidence suggested women earn smaller CWDs (and therefore have lower VSLs)

� We show this is a result of model specification error and measurement error

� There is precisely zero gender gap in CWDs in our empirical context

� Answer: No, CWDs for safety cannot explain sorting patterns

� NB: this says nothing about the importance of preferences, only implicit market prices
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Can sorting patterns be explained

by gender differences in ψg
J(i ,t)?



OME Decomposition Estimates

Variance Components Women Men

Component
Variance

Component
Variance

Share Share

SD of Log Wages 0.74 100% 0.69 100%

SD Worker Effects 0.59 63% 0.54 60%

SD Estab-Gender Effects 0.31 17% 0.28 16%

SD of X β 0.11 2% 0.13 4%

SD Residual 0.13 3% 0.14 4%

Cov (θ, ψg ) 0.03 6% 0.04 8%

Cov (θ,X β) 0.00 1% –0.00 0%

Cov (ψg ,X β) 0.00 0% 0.00 0%

� Women have larger

wage variance, in large

part because of

establishment

assignment ψg

� Similar assortative

matching on θ and ψg
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Decomposing Establishment Treatment from Assignment

� To what extent do women sort differently in the ψg
J(i ,t)

dimension because

establishments pay different wage premia to women relative to men?

� To answer this question, need to compare levels of ψf
J(i ,t) and ψm

J(i ,t), but these are
estimated on disconnected sets, so comparison requires a normalization

� We normalize the average ψf
J(i ,t) = 0 and ψm

J(i ,t) = 0 in the five lowest industries
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Normalized Female vs Male ψ̂J(i ,t)
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OME Estimated Components of Wage Gap

Women Men Gender Gap Share

Log Wage 1.544 1.727 0.183 100%

First Stage Controls (Exp. and Year) 0.670 0.652 –0.018 -10%

Occupation Effects 0.030 0.004 –0.027 -15%

Person-Specific Component –0.109 0.063 0.172 94%

Establishment Assignment 0.160 0.211 0.051 28%

Within-Estab. Gender Gap 0.001 –0.000 0.001 1%

*Remainder of gap is from differences in timing of assignment to jobs
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Decomposing Effects of Establishment Assignment

and Treatment Conditional on Establishment
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Job Assignment and Establishment Wage Effects

All Jobs Held Jobs Held

Jobs by Women by Men

Normalized Female Establishment Effect 0.184 0.161 0.197

Normalized Male Establishment Effect 0.190 0.153 0.212

Female Fatality Rate 0.014 0.011 0.016

Male Fatality Rate 0.056 0.034 0.068

N 21,813,701 8,050,994 13,762,707
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Impacts of establishment-level

gender segregation



Two-Dimensional Sorting Framework

� A very simple framework for characterizing 2-dimensional sorting patterns (Lindenlaub

and Postel-Vinay, 2017)

� Consider jobs that differ in attributes y = (yψ, ya)

� Workers have vector of skills or characteristics x = (θ, g)

� Surplus of a job match σ(x, y) can depend on interactions between x and y

� Frictional search, workers move when σ(x, yd ) > σ(x, yo)
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Two-Dimensional Sorting Framework

� Conditional probability of moving to a job with attributes y is Pr [y|yo, x]

� Without any additional structure, can full characterize job sorting in this model by

gradient vectors:

{E[∆ψ|yo, x], E[∆a|yo, x]}

� Gradient vectors characterize how systematic patterns of job changes shift the

marginal distributions of job attributes (yψ, ya)

� We empirically estimate the field of these gradient vectors
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Female Job-to-Job Transition Gradient Field

Figure 8: Average Gradients of Job Changes by Decile of Origin ψg
J(i ,t)

and a
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Male Job-to-Job Transition Gradient Field

Figure 9: Average Gradients of Job Changes by Decile of Origin ψg
J(i ,t)

and a
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Job-to-Job Transition Gradient Fields: Low Wage Women and Men

(a) Low Wage Women (b) Low Wage Men
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Job-to-Job Transition Gradient Fields: High Wage Women and Men

(a) High Wage Women (b) High Wage Men
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Interpretation Caveats

� One concern is that establishments differ in safety, and workers may sort based on this
establishment-specific component

� Difficult to directly model because fatalities are very rare, more than 99% of

establishments have zero fatalities

� Inherent tradeoff between precision and measurement error

� We fail to reject any difference in average fatality rates in establishment-occupation cells

in which the female share is above vs below the industry-occupation average

� These analyses cannot isolate underlying cause of sorting patterns

� Mechanisms that explains ψ itself are poorly understood, but most explanations involve

labor market frictions

� If (unmodeled) frictions differ by gender then sorting on ψ may not reflect differences in

preferences or productivity
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Establishment Segregation

� To what extent does sorting on safety contribute to gender gap in establishment

assignment?

� Construct industry-occupation dissimilarity index:

D =
1

2

K

∑
`=1

∣∣∣∣ f`F − m`

M

∣∣∣∣
� K : number of establishments in industry-occupation cell

� F , M: number of women (men) employed in cell

� f`, m`: number of women (men) in cell employed in establishment `

� Interpretation: D measures share of workers who would have to be re-assigned to make

establishment-occupation gender share match the industry-occupation gender share

44



Establishment Segregation vs Safety
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� Much stronger

establishment

segregation in

industry-occupations

in which women are

safer than men

� Suggestive that safety

gap may not be driven

by task assignment
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ψ vs Establishment Segregation
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� Safety-driven

segregation leads

women to be

over-represented in

low-wage

establishments

46



ψ vs Safety
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� Connecting these two

patterns shows that

safety gap is strongly

related to

establishment pay

� Implies 1 SD increase

in safety associated

with 1.8 pp gender

wage gap (10% of

entire raw wage gap in

Brazil)
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Conclusion

� Revisit labor market sorting in two-dimensional framework: wages versus safety

� Show that safety plays strikingly large role in understanding job dynamics

� Roughly as salient in explaining job mobility as sorting on firm-level compensation

� Similar patterns do not exist for financial risk, despite clear gender gap in risk preferences

� In contrast to prior studies, no gender difference in compensating differentials for safety

� Large indirect effects of safety on wages caused by altering the distribution of
establishment assignment for women

� Segregation of men and women across establishments is strongly correlated with safety

patterns

� This establishment assignment channel explains 1/3 of the overall gender wage gap

� Suggests occupational safety regulations may be an overlooked policy tool for affecting

wage disparities
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